İçeriğe atla

Tobit modeli

Tobit modeli negatif olmayan bağımlı bir değişken ile bağımsız bir değişken veya vektör arasındaki ilişkiyi tanımlamak için James Tobin tarafından öne sürülen bir ekonometrik yöntemdir.

Model gibi bir gizli (yani gözlemlenemeyen) değişkenin varlığını varsayar. Bu değişken değişkenine doğrusal olarak parametresi veya vektörü ile bağlıdır. parametresi veya vektörü lineer modelde olduğu gibi ve arasındaki ilişkiyi belirler. Ek olarak bu ilişkideki rassal etkileri kapsayacak normal dağılıma sahip bir hata terimi vardır. Gözlemlenebilen , eğer gözlemlenemeyen sıfırdan büyükse ’a, gözlemlenemeyen sıfırdan küçük veya sıfıra eşitse sıfıra eşittir.

Burada gözlemlenemeyen değişkendir.

Eğer ilişki parametresi gözlemlenen lerin ler üzerine regresyonu ile elde edilirse ortaya çıkan en küçük kareler regresyonu tutarsızdır. Çünkü sıfır değere sahip değişkenler için hata teriminin ortalaması sıfır olmayacaktır ve normal dağılım varsayımı ihlal edilmiş olacaktır. Eğer gözlenemeyen normal dağılıma sahip olduğu varsayılır ise en çok olabilirlik metodu kullanılarak Tobit tahmini yapılabilir ve tutarlı parametre tahminleri elde edilebilir.

Ekonometrik analiz yapılırken bağımlı değişken değerinin alttan veya üstten sınırlandırılmak zorunda olunması veri kaybına neden olmaktadır. Bağımlı değişkenin değişim aralığının herhangi bir şekilde sınırlandırıldığı regresyon modellerinde eğer belirli bir aralığın dışındaki gözlemler tamamen kaybedilmekte ise kesikli model, ancak en azından bağımsız değişkenler gözlenebiliyorsa sansürlü model söz konusu olur. Tobit modeli sansüre uğramış regresyon modelinin özel bir şeklidir çünkü gizli değişkeni her zaman gözlemlenemezken değişkeni gözlemlenebilirdir. Tobit modelinin genel bir varyasyonu gibi sıfırdan farklı bir değerde sansür olması halidir.

Diğer bir varyasyon ise gibi bir değerin üzerindekilerin sansüre uğramasıdır..

Başka bir varyasyon da nin aynı anda hem alttan hem de üstten sansüre uğramasıdır.

Bu tür genelleştirmeler Tobit modeli olarak anılır sansürlemenin nerede ve ne zaman olacağına bağlı olarak farklı Tobit modelleri yazılabilir. Amemiya bunları 5 kategoriye ayırmıştır(Tobit I - Tobit V)

Ayrıca bakınız

  • Kesik regresyon modeli

Kaynakça

  • Amemiya, Takeshi (1973). "Regression analysis when the dependent variable is truncated normal". Econometrica 41 (6), 997–1016.
  • Amemiya, Takeshi (1984). "Tobit models: A survey". Journal of Econometrics 24 (1-2), 3-61.
  • Amemiya, Takeshi (1985). "Advanced Econometrics". Basil Blackwell. Oxford.
  • Schnedler, Wendelin (2005). "Likelihood estimation for censored random vectors". Econometric Reviews 24 (2),195–217.
  • Tobin, James (1958). "Estimation for relationships with limited dependent variables". Econometrica 26 (1), 24–36.

Dış bağlantılar

İlgili Araştırma Makaleleri

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.

En küçük kareler yöntemi, birbirine bağlı olarak değişen iki fiziksel büyüklük arasındaki matematiksel bağlantıyı, mümkün olduğunca gerçeğe uygun bir denklem olarak yazmak için kullanılan, standart bir regresyon yöntemidir. Bir başka deyişle bu yöntem, ölçüm sonucu elde edilmiş veri noktalarına "mümkün olduğu kadar yakın" geçecek bir fonksiyon eğrisi bulmaya yarar. Gauss-Markov Teoremi'ne göre en küçük kareler yöntemi, regresyon için optimal yöntemdir.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

<span class="mw-page-title-main">Beta dağılımı</span>

Olasılık kuramı ve istatistikte, beta dağılımı, [0,1] aralığında iki tane pozitif şekil parametresi ile ifade edilmiş bir sürekli olasılık dağılımları ailesidir. Çok değişkenli genellemesi Dirichlet dağılımıdır.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Üstel dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında üstel dağılımı bir sürekli olasılık dağılımları grubudur. Sabit ortalama değişme haddinde ortaya çıkan bağımsız olaylar arasındaki zaman aralığını modelleştirirken bir üstel dağılım doğal olarak ortaya çıkar.

<span class="mw-page-title-main">Weibull dağılımı</span> Olasılık dağılımı

Olasılık kuramı ve istatistik bilim dallarında Weibull dağılımı ) bir sürekli olasılık dağılımı olup olasılık yoğunluk fonksiyonu şöyle ifade edilir:

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

<span class="mw-page-title-main">Laplace dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Laplace dağılımı Pierre-Simon Laplace anısına isimlendirilmiş bir sürekli olasılık dağılımıdır. Arka arkaya birbiriyle yapıştırılmış şekilde ve bir de konum parametresi dahil edilerek birleştirilmiş iki üstel dağılımdan oluştuğu için, çift üstel dağılımı adı ile de anılmaktadır. İki bağımsız ve tıpatıp aynı şekilde üstel dağılım gösteren bir rassal değişken bir Laplace dağılımı ile işlev görürler. Bu, aynen üstel dağılım gösteren rassal zamanda değerlendirilen Brown devinimine benzer.

Olasılık kuramı ve istatistik bilim dallarında birikimli dağılım fonksiyonu bir reel değerli rassal değişken olan Xin olasılık dağılımını tümüyle tanımlayan bir fonksiyondur. Olasılık dağılım fonksiyonu veya sadece dağılım fonksiyonu olarak da anılmaktadır. Her bir reel sayı olan x için X'in birikimli dağılım fonksiyonu şöyle ifade edilir:

Cevap yüzeyi yöntemi (CYY) bazı girdi değişkenleriyle bir veya daha fazla çıktı değişkeninin arasındaki ilişkiyi inceler. Yöntem ilk kez G.E.P Box ve K. B. Wilson tarafından 1951'de ortaya atılmıştır. CYY temelde tasarlanmış deneylerle elde edilmiş verilere uydurulan polinomlar yardımıyla eniyileme (optimizasyon) yapabilmeyi sağlar.

<span class="mw-page-title-main">Doğrusal olmayan regresyon</span>

Doğrusal olmayan regresyon, istatistik bilimde gözlemi yapılan verilerin bir veya birden fazla bağımsız değişkenin model parametrelerinin doğrusal olmayan bileşiği olan ve bir veya daha çok sayıda bağımsız değişken ihtiva eden bir fonksiyonla modelleştirilmesini içeren bir regresyon (bağlanım) analizi türüdür. Veriler arka-arkaya yapılan yaklaşımlarla kurulan modele uydurularak çözümleme yapılır.

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

<span class="mw-page-title-main">Green fonksiyonları</span>

Green fonksiyonları, matematikte homojen olmayan diferansiyel denklemlerin, istenen sınır koşulları altında çözülmesinde kullanılan bir yöntemi ve bu yöntemle ilişkili olarak hesaplanan fonksiyonu belirtmekte kullanılır. İlk kez matematikçi George Green tarafından kullanılmıştır.

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

Çifte doğrusallık, matematik'te, çiftdoğrusal işlemci her bir bağımsız dogrusal değişkenlerin üçüncü bir vektör uzayının bir öğesini elde etmek için iki vektör uzayı öğelerini birleştiren bir fonksiyonudur. Matris çarpimi bir örnektir.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

Bessel polinomları, matematikteki ortogonal polinomların bir dizisidir. Bessel polinomlarıyla ilgili birbirinden farklı ama birbiriyle yakından ilişkili çok sayıda tanım vardır. Matematikçiler tarafından tercih edilen tanım şu seriyle verilmektedir: