İçeriğe atla

Theodorus sarmalı

Theodorus'un hipotenüsüne sahip üçgene kadar olan sarmalı

Geometride, Theodorus Sarmalı (karekök sarmalı, Einstein sarmalı veya Pisagor sarmalı olarak da adlandırılır),[1] uç uca yerleştirilmiş dik üçgenlerden oluşan bir spiraldir. Adını, Cyreneli Theodorus'tan almıştır.

Çizimi

Sarmal bir ikizkenar dik üçgenle başlar ve her kenar birim uzunluğa sahiptir. Başka bir dik üçgen oluşturulur, bir kenarı önceki üçgenin hipotenüsü (uzunluğu 2 olan) ve diğer kenarının uzunluğu 1 olan otomatik bir dik üçgen oluşturulur. Bu ikinci üçgenin hipotenüsünün uzunluğu 3'tür. İşlem daha sonra benzer adımlarla tekrar eder. Dizideki nci üçgen, kenar uzunlukları n ve 1 olan ve hipotenüs n+1 olan bir dik üçgendir. Örneğin, 16. üçgenin kenarları 4 (= 16), 1 ve hipotenüs 17'dir.

Tarihçe ve kullanım

Theodorus'un tüm çalışmaları kaybolmuş olsa da, Platon, Theodorus'a, çalışmalarını anlattığı Theaetetus'un diyaloğunda yer vermiştir. Theodorus'un Theodorus Sarmalı aracılığıyla 3'ten 17'ye kadar karesel olmayan tam sayıların tüm kareköklerinin irrasyonel olduğunu kanıtladığı varsayılmaktadır.[2]

Platon, 2'nin karekökünün irrasyonelliğini Theodorus'a atfetmez, çünkü ondan önce de iyi biliniyordu. Theodorus ve Theaetetus, rasyonel sayıları ve irrasyonel sayıları farklı kategorilere ayırır.[3]

Hipotenüs

Üçgenlerin hipotenüsleri, , 'ye karşılık gelen doğal sayı'nın karekök'ünü verir.

Theodorus tarafından eğitilen Platon, Theodorus'un neden 17'de durduğunu sorguladı. Bunun nedeninin, 17 hipotenüsünün şekil ile üst üste gelmeyen son üçgene ait olduğu düşünülmektedir.[4]

Üst üste gelme

1958'de Erich Teuffel, sarmal ne kadar devam ettirilirse ettirilsin, iki hipotenüsün asla çakışmayacağını kanıtladı. Ayrıca, birim uzunluğunun kenarları bir çizgiyle uzatılırsa, bunlar hiçbir zaman şeklin diğer köşelerinden biriyle kesişmez.[4][5]

Genişleme

Theodorus Sarmalı'nın renkli 110 üçgen ile genişletilmiş hali

Theodorus sarmalını hipotenüsü 17 olan üçgende durdurdu. Sarmal, sonsuz sayıda üçgenle devam ederse, daha birçok ilginç özellik bulunur.

Büyüme oranı

Açı

Eğer φn, nci üçgenin (veya spiral segmentinin) açısı ise, o zaman:

Bu nedenle, bir sonraki n üçgenin φn açısının büyümesi:[1]

olur. İlk k üçgenin açılarının toplamına, kıncı üçgen için toplam açı φ(k) denir. Sınırlı bir düzeltme terimi olan c2 ve knin karekökü ile orantılı olarak büyür:[1]

burada

'dir.

(OEISA105459).

Bir üçgen veya spiral kesiti

Yarıçap

Sarmal yarıçapının belirli bir n üçgeninde büyümesi;

'dir.

Arşimet sarmalı

Theodorus Sarmalı, Arşimet Sarmalı'na yakınsar.[1] Nasıl Arşimet sarmalının iki sargısı arasındaki mesafe, matematiksel sabit π'ye eşitse, Theodorus sarmalının dönüş sayısı sonsuza yaklaştıkça, ardışık iki sargı arasındaki mesafe hızla π'ye yaklaşır.[6]

Aşağıda, π'ye yaklaşan sarmalın iki sargısını gösteren bir tablo yer almaktadır:

Sargı No.: Hesaplanan ortalama sargı mesafesi π ile karşılaştırıldığında ortalama sargı mesafesinin doğruluğu
2 3.1592037 %99.44255
3 3.1443455 %99.91245
4 3.14428 %99.91453
5 3.142395 %99.97447
π→ %100

Görülebileceği gibi, yalnızca beşinci sargıdan sonra, mesafenin π'ye göre yaklaşıklığı %99,97'dir.[1]

Sürekli eğri

Davis'in orijinden zıt yönde genişleme dahil (negatif düğüm sayıları) Theodorus Sarmalının çözümsel uzanımı.

Theodorus sarmalının ayrık noktalarının düzgün bir eğri ile nasıl interpolasyon yapılacağı sorusu öne sürülmüş ve faktöriyel fonksiyonu için bir interpolant olarak gama fonksiyonu için Euler Formülüne benzetilerek Davis 2001, ss. 37–38'de cevaplanmıştır. Philip J. Davis, öğrencisi Jeffery J. Leader[7] ve Arieh Iserles (ek olarak Davis 2001) tarafından daha ayrıntılı incelenen aşağıdaki fonksiyonu buldu;

Bu fonksiyonun aksiyomatik bir karakterizasyonu, Gronau 2004'te fonksiyonel denklemi karşılayan benzersiz fonksiyon olarak verilmiştir.

başlangıç koşulu ve hem bağımsız değişken (argüman) hem de modülde monotonluk; alternatif koşullar ve zayıflamalar da burada incelenir. Alternatif bir türetme, Heuvers, Moak & Boursaw 2000'de verilmiştir.

Davis'in orjine zıt yönde uzanan Theodorus Sarmalının sürekli formunun çözümsel uzanımı Waldvogel 2009'de verilmiştir.

Şekilde, orijinal (ayrık) Theodorus spiralinin düğümleri küçük yeşil daireler olarak gösterilmiştir. Mavi olanlar, spiralin ters yönünde eklenenlerdir.

Şekilde yalnızca kutupsal (polar) yarıçapının tam sayı değerine sahip düğümleri numaralandırılmıştır. Koordinat başlangıcındaki kesikli çizgi ile gösterilen çember, noktasındaki eğrilik çemberidir.

Ayrıca bakınız

Notlar

  1. ^ a b c d e Hahn, Harry K. "The Ordered Distribution of Natural Numbers on the Square Root Spiral". arXiv:0712.2184 $2. 
  2. ^ Nahin, Paul J. (1998), An Imaginary Tale: The Story of [the Square Root of Minus One], Princeton University Press, s. 33, ISBN 0-691-02795-1 
  3. ^ Plato; Dyde, Samuel Walters (1899), The Theaetetus of Plato, J. Maclehose, ss. 86-87. 
  4. ^ a b Long, Kate. "A Lesson on The Root Spiral". 27 Eylül 2011 tarihinde kaynağından arşivlendi. Erişim tarihi: 30 Nisan 2008. 
  5. ^ Erich Teuffel, Eine Eigenschaft der Quadratwurzelschnecke, Math.-Phys. Semesterber. 6 (1958), ss. 148-152.
  6. ^ Hahn, Harry K. (2008). "The distribution of natural numbers divisible by 2, 3, 5, 7, 11, 13, and 17 on the Square Root Spiral". arXiv:0801.4422 $2. 
  7. ^ Leader, J.J. The Generalized Theodorus Iteration (tez), 1990, Brown University

Konuyla ilgili yayınlar

  • Davis, P. J. (2001), Spirals from Theodorus to Chaos, A K Peters/CRC Press 
  • Gronau, Detlef (March 2004), "The Spiral of Theodorus", The American Mathematical Monthly, Mathematical Association of America, 111 (3), ss. 230-237, doi:10.2307/4145130, JSTOR 4145130 
  • Heuvers, J.; Moak, D. S.; Boursaw, B (2000), "The functional equation of the square root spiral", T. M. Rassias (Ed.), Functional Equations and Inequalities, ss. 111-117 
  • Waldvogel, Jörg (2009), Analytic Continuation of the Theodorus Spiral (PDF), 23 Şubat 2012 tarihinde kaynağından arşivlendi (PDF), erişim tarihi: 11 Eylül 2020 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Dik üçgen</span>

Dik üçgen, iç açılarından biri 90° olan üçgendir. Çemberde çapı gören çevre açı 90°'dir.

<span class="mw-page-title-main">İrrasyonel sayılar</span> Irrasyonel

İrrasyonel sayılar, rasyonel sayılar kümesine dahil olmayan gerçek sayılardır. Payı ve paydası birer tam sayı olan bir kesir olarak ifade edilemeyen bu sayılara , , ve örnek verilebilir. veya ile gösterilir. Bu sayıların ondalık açılımı, kendini tekrar etmeden, sonsuza kadar sürer. Bu açılım irrasyonel sayıların hemen hemen hepsinde düzensizdir; ancak bir düzen de gösterebilir, örneğin bütün sayıların sırayla yazılmasıyla edilecek 0,12345678910111213... sayısı irrasyoneldir. İrrasyonel sayıların ilk gerçek değerini Archimedes kullanmıştır.

<span class="mw-page-title-main">Totient</span>

Totient sayılar teorisinde, bir tam sayının o sayıdan daha küçük ve o sayı ile aralarında asal olan sayma sayı sayısını belirten fonksiyondur. Genellikle Euler Totient ya da Euler'in Totienti olarak adlandırılan Totient, İsviçreli matematikçi Leonhard Euler tarafından yaratılmıştır. Totient fonksiyonu, Yunan harflerinden ile simgelendiği için Fi fonksiyonu olarak da anılabilir.

<span class="mw-page-title-main">Karekök</span>

Matematikte negatif olmayan bir gerçel sayısının temel karekök bulma işlemi şeklinde gösterilir ve karesi (bir sayının kendisiyle çarpılmasının sonucu) olan negatif olmayan bir gerçek sayıyı ifade eder.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Sinüs (matematik)</span>

Matematikte sinüs, trigonometrik bir fonksiyon. Sin kısaltmasıyla ifade edilir.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

<span class="mw-page-title-main">Hipotenüs</span>

Hipotenüs, 90 derecelik açının karşısındaki kenardır.

<span class="mw-page-title-main">Kosekant</span>

Kosekant trigonometrik bir fonksiyondur. Trigonometrik sinüs fonksiyonunun tersi olarak da tanımlanabilir. cosec veya csc olarak ifade edilebilir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Gauss-Legendre Algoritması π sayısının basamaklarını hesaplamak için kullanılan bir algoritmadır. Sadece 25 iterasyonda π sayısının 45 milyon basamağını doğru olarak hesaplıyor.

<span class="mw-page-title-main">Kepler üçgeni</span>

Kepler üçgeni, kenarları geometrik dizi oluşturan bir dik üçgen. Kepler üçgeninin kenarları altın oranla

<span class="mw-page-title-main">Altın üçgen</span>

Altın üçgen, eş kenarlarının diğer kenara oranı φ'ye, altın oran, eşit olan ikizkenar üçgen.

Normalleştirme sabiti, olasılık kuramı ve matematiğin diğer çeşitli alanlarında ortaya çıkar. Örneğin normal dağılımın normalleştirme sabitini hesaplamak için Gauss integrali kullanılabilir.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

<span class="mw-page-title-main">Birim çember</span> trigonometri ve mampo da çok işlemi olmuş bir çemberdi ve çok kolay bir yönetimi vardır birim çemberi matematiğin temelini olustur bu yüzden çok önemli bir cemberdir

Birim çember Matematikte, yarıçapı bir birim olan çembere birim çember denir. Çoğunlukla, özellikle trigonometride, Öklid düzlemine göre Kartezyen koordinat sisteminde, merkezi orijin üzerinde (0,0) olan ve yarıçapı bir birim olan çemberdir. n birim çember sıklıkla S1; olarak ifade edilir. Genellikle daha büyük boyutları ise birim küredir. (x, y) birim çember üzerinde bir nokta olduğunda, |x| ve |y|, dik olan ve hipotenüsü bir olan üçgenin diğer kenar uzunluklarıdır. Bu nedenle, Pisagor teoremine göre, x ve y bu denklemi karşılamaktadır.

Cyreneli Theodorus, MÖ 5. yüzyılda yaşamış eski bir Libyalı Yunan matematikçi. Günümüze ulaşan ve ilk elden anlatılanlar, Platon'un diyaloglarından üçünde; Theaetetus, Sofist ve Devlet Adamı (Statesman) yer alır. Önceki diyalogda, şimdi Theodorus Sarmalı olarak bilinen matematiksel bir teoremi öne sürmektedir.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.