İçeriğe atla

Thales teoremi (çember)

Thales teoremi: eğer AC çapsa, B dik açıdır.

Çemberlerde Thales teoremi, alınan A, B ve C noktalarının bir çember üzerinde ve AC doğrusunun bu çemberin çapı olması durumunda, ABC açısının dik açı olacağını belirten geometri teoremi. Thales teoremi çevre açı kurallarının özel bir hâlidir. Adını Thales'ten alan teorem, genellikle ona atfedilir ancak bazı yerlerde Pisagor'la da ilişkilendirilir.

İspat

Teoremin ispatı.
AC çap olduğu sürece, B açısı sabit ve dik açıdır.

Teoremin ispatında yararlanılacak kurallar:

O çemberin merkezi olarak alınsın. OA = OB = OC olduğundan, OBA ile OBC birer ikizkenar üçgendir; ikizkenar üçgenin taban açılarının eşitliğinden, OBC = OCB ve BAO = ABO yazılır. α = BAO ve β = OBC diye adlandırılsın. ABC üçgenin iç açıları α, α + β ve β olacaktır. İç açılar toplamının iki dik açıya eşitliğinden

yani

ya da sadeleştirilirse

QED

Tersi

Thales teoreminin evirilmiş hali de geçerlidir; yani bir dik üçgenin hipotenüsü, üçgenin çevrel çemberinin çapıdır.

Thales teoremiyle evirimi birleştirildiğinde elde edilecek ifade:

Bir üçgenin çevrel çemberinin merkezi, ancak ve ancak bir dik üçgen ise üçgenin kenarları üzerindedir.

Geometriyle ispatı

Evirmenin geçerliliğin ispatı

İspat dik üçgen dikdörtgene tamamlanarak ve dikdörtgenin merkezinin köşelere eşit uzaklıkta, dolayısıyla orijinal üçgenin çevrel çemberinin merkezi, olduğu göz önüne alınarak yapılır. İki bilgi kullanılır:

  • bir paralelkenarın karşılıklı açıları bütünlerdir (toplamları 180°),
  • bir dikdörtgenin köşegenleri eşit uzunluktadır ve birbirlerini orta noktalarında keserler.

ABC dik açısı, A'dan geçen BC'ye paralel r doğrusu ve C'den geçen AB'ye paralel s doğrusu alınsın. D r ile s doğrularının kesişim noktası olarak tanımlansın. (henüz D'nin çember üzerinde olduğu kesin değil)

Oluşan ABCD dörtgeni bir paralelkenardır (karşılıklı kenarları birbirine paralel). Paralelkenarın karşılıklı açıları bütünler (toplamları 180°) ve ABC açısının dik açı (90°) olduğu bilindiğinden BAD, BCD ve ADC açıları da diktir; yani ABCD bir dikdörtgendir.

AC ve BD köşegenlerinin kesişim noktası O olsun. O noktası, yukarıdaki ikinci bilgiye göre, A, B ve C köşelerine eşit uzaklıktadır. Bu durumda O çevrel çemberin merkezi ve üçgenin hipotenüsü AC çemberin çapı olur.

Lineer cebirle ispatı

İspat için iki bilgi kullanılacaktır:

  • iki doğru arasında ancak ve ancak doğrultu vektörlerinin skaler çarpımı sıfırsa, dik açı bulunur
  • bir vektörün boyutunun karesi, vektörün kendisiyle skaler çarpımıyla bulunur.

ABC dik açısı ve AC çaplı M çemberi alınsın. İşlemlerin basitleşmesi için M'in merkezi orijinde kabul edilsin. Buna göre

  • A = − C, çünkü AC çaplı çemberin merkezinde orijinde ve
  • (A − B) · (B − C) = 0, ABC dik açı.

İfadeler düzenlenirse

0 = (A − B) · (B − C) = (A − B) · (B + A) = |A|2 − |B|2.

Sonuçta:

|A| = |B|.

Yukarıdaki bağıntıya göre A ile B orijine, diğer bir ifadeyle M 'nin merkezine, eşit mesafededir. A 'nın M üzerinde olduğu düşünüldüğünde, B de çember üzerinde yer alacaktır ve bu durumda M çemberi üçgenin çevrel çemberidir.

Yapılan tüm işlemler Thales teoreminin, her iki yönde de, herhangi bir iç çarpım uzayında geçerli olduğunu gösterir.

Uygulamaları

Thales teoremi kullanılarak teğet çizimi.

Thales teoremi yardımıyla bir çembere istenilen noktadan teğet çizilebilir. (Şekilde gösterildiği gibi) O merkezli bir k çemberi ve çember dışında bir P noktası alınarak, k'ye P'den geçen teğet(ler) (kırmızı) çizilmek istensin. Teğet doğrusu t'nin çembere T noktasında değdiği varsayalır (henüz bu bilinmiyor). Yarıçap OT teğete dik olacaktır. Sonrasında O ile P'nin orta noktasına H diyerek, O ile P'den geçen H merkezli bir çember çizilsin. Thales teoremine göre, istenen T noktası iki çemberin kesişim noktasıdır çünkü k üzerinde bulunur ve OTP dik üçgenini tamamlar.

Çemberlerin iki kesişimi olduğundan, bu yöntemle istenen noktadan geçecek iki teğet doğrusu da çizilebilir.

Tarihçe

Mısırlılar ve Babillilerin ampirik olarak Thales teoremini biliyor olmaları gerektiği[] düşünülmekte olduğundan, Thales bu teoremi ilk bulan kişi değildir; ancak halkların teoremi ispatladığına dair herhangi bir kayıt yoktur. Teorem, Thales'in ikizkenar üçgenlerin taban açıları ve üçgenin iç açılarının toplamı gibi kendi çıkarımlarını kullanarak ispatı yapan ilk kişi olması nedeniyle, onun ismini almıştır.

Kaynakça

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Pisagor teoremi</span> Öklid geometrisinde bir dik üçgenin üç kenarı arasındaki bağıntı

Pisagor teoremi veya Pisagor bağıntısı, Öklid geometrisinde üçgenin kenarları arasındaki temel ilişkiyi kuran ilk teoremlerden biridir. Teoreme gerçek hayattan örnek olarak telli çalgıları gösterilebilir; 'telin uzunluğu arttıkça titreşim artar' prensibine dayanır. Pisagor'un denklemi olarak da isimlendirilen bu teorem, a, b ve c kenarlarının arasındaki ilişkiyi şu şekilde açıklar:

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Sinüs teoremi</span> Öklid geometrisinde üçgenlerle ilgili bir teorem

Sinüs teoremi, bir çembersel üçgende bir kenar ve bu kenar karşısındaki açının sinüsleri oranı sabittir. Sinüs, dik açılı üçgenlerde dik olmayan bir açının karşısında kalan dik kenar ile hipotenüsün birbirine oranıdır.

<span class="mw-page-title-main">Dik açı</span> 90° açı (π/2 radyan): düz bir doğrunun oluşturduğu açıyı (180°) iki yarıya bölen açı

Geometri ve trigonometride, bir dik açı, bir çeyrek dönüşe tam olarak 90° (derece) bir açıdır. Bir ışın, uç noktası bir doğru üzerinde olacak şekilde yerleştirilirse ve bitişik açılar eşitse, o zaman bunlar dik açılardır. Terim, Latince angulus rectus’tan öykünmedir; burada rectus, yatay bir taban çizgisine düşey olan dikey manasında "dik (direk)" anlamına gelir.

<span class="mw-page-title-main">Açıortay</span>

Açıortay, geometride bir açıyı iki eşit açı şeklinde bölen yapıdır. Bir açıya teğet tüm çemberler çizilerek merkezleri birleştirilirse, o açının açıortayı elde edilir. Bu nedenle açıortaylardan açının kollarına indirilen dikmeler, o çemberlerden birinin merkezinden teğetlere inilen yarıçap dikmeleri olacağından, dikmeler birbirine eşit olur. Her iki kolda oluşan üçgenler de birbirine eşit olacağından, dikmelerin açıortay kollarını kestiği noktalar ile açının bulunduğu köşeye olan uzaklıklar eşit olur.

<span class="mw-page-title-main">Çevrel çember</span>

Çevrel çember, geometride, bir çokgenin tüm köşelerinden geçen çember. Bu çemberin merkezi çevrel özek olarak isimlendirilir.

<span class="mw-page-title-main">Brocard noktaları</span>

Brocard noktaları, geometride bir üçgen içinde yer alan özel noktalardır. Fransız matematikçi Henri Brocard'ın çalışmalarından dolayı bu adı almıştır.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

<span class="mw-page-title-main">Apollonius teoremi</span> Öklid geometrisinde bir teorem

Geometri'de, Apollonius teoremi, üçgenin bir kenarortay uzunluğunu kenarlarının uzunluklarıyla ilişkilendiren bir teoremdir.

<span class="mw-page-title-main">Crossbar (Pasch) teoremi</span> Diğer iki ışın arasındaki bir ışın, ilk iki ışın arasındaki herhangi bir çizgi parçasını keser.

Geometride Crossbar (Pasch) teoremi, ışını ışını ile ışını arasındaysa, ışınının doğrusu parçasını keseceğini belirtir.

<span class="mw-page-title-main">Pappus'un alan teoremi</span> rastgele bir üçgenin üç kenarına iliştirilmiş üç paralelkenarın alanları arasındaki ilişkiyi verir

Pappus'un alan teoremi, verilen herhangi bir üçgenin üç kenarına yaslanmış üç paralelkenarın alanları arasındaki ilişkiyi tanımlar. Pisagor teoreminin bir genellemesi olarak da düşünülebilecek teorem, adını onu keşfeden Yunan matematikçi İskenderiyeli Pappus'tan almıştır.

<span class="mw-page-title-main">Bézout teoremi</span> aciklama

Bézout teoremi, cebirsel geometride n değişkenli n polinomun ortak sıfırlarının sayısı ile ilgili bir ifadedir. Orijinal biçiminde teorem, genel olarak ortak sıfırların sayısının, polinomların derecelerinin çarpımına eşit olduğunu belirtir. Adını Fransız matematikçi Étienne Bézout'dan almıştır.

Carnot teoremi, bir üçgenin iç teğet çemberi ve çevrel çemberinin yarıçaplarının uzunlukları ile çevrel çemberin merkezinden üçgenin üç kenarına olan mesafelerin toplamı arasındaki ilişkiyi göstermektedir. Fransız matematikçi Lazare Nicolas Marguerite Carnot tarafından bulunmuştur.

Dış açı teoremi, bir üçgenin bir dış açısının ölçüsünün, uzak iç açılarının ölçülerinden daha büyük olduğunu belirten Ökllid'in Elemanlar'ı Önerme 1.16'dır. Bu, mutlak geometride temel bir sonuçtur çünkü ispatı paralellik postülatına bağlı değildir.

<span class="mw-page-title-main">Geometrik ortalama teoremi</span> Dik üçgenler hakkında bir teorem

Dik üçgen yükseklik teoremi veya geometrik ortalama teoremi, bir dik üçgendeki hipotenüs üzerindeki yükseklik uzunluğu ile hipotenüs üzerinde oluşturduğu iki doğru parçası arasındaki ilişkiyi tanımlayan temel geometrinin bir sonucudur. İki doğru parçasının geometrik ortalamasının yüksekliğe eşit olduğunu belirtir.

<span class="mw-page-title-main">Çevre açı</span>

Geometride, çevre açı, çember üzerinde iki sekant (kesen) çizgisi kesiştiğinde bir çember üzerinde oluşan açıdır. Çember üzerindeki bir nokta ile çember üzerinde verilen diğer iki noktanın oluşturduğu açı olarak da tanımlanabilir.

<span class="mw-page-title-main">Jacobi teoremi (geometri)</span>

Düzlem geometride, bir Jacobi noktası, bir üçgeni ve , ve açılarından oluşan üçlü tarafından belirlenen Öklid düzleminde bir noktadır. Bu bilgi, , ve olmak üzere , ve şeklinde üç noktayı belirlemek için yeterlidir. Ardından, Alman matematikçi Karl Friedrich Andreas Jacobi (1795-1855) teoremine göre, , ve doğruları, Jacobi noktası denilen bir noktasında kesişir.

Geometride, bir çokgenin yarı çevresi, çevre uzunluğunun yarısıdır. Çevreden doğrudan türetilebilmesine rağmen, yarı çevre üçgenler ve diğer şekiller için kullanılan formüllerde oldukça sık görülür ve ayrı/özel bir isim verilir. Yarı çevre, bir formülün parçası olarak ortaya çıktığında, genellikle s harfiyle gösterilir.

<span class="mw-page-title-main">Kirişler dörtgeni</span> tüm köşeleri tek bir çember üzerinde yer alan dörtgen

Öklid geometrisinde, bir kirişler dörtgeni veya çembersel dörtgen veya çevrimsel dörtgen, köşeleri tek bir çember üzerinde bulunan bir dörtgendir. Bu çembere çevrel çember denir ve köşelerin aynı çember içinde olduğu söylenir. Çemberin merkezi ve yarıçapı sırasıyla çevrel merkez ve çevrel yarıçap olarak adlandırılır. Bu dörtgenler için kullanılan diğer isimler eş çember dörtgeni ve kordal dörtgendir, ikincisi, dörtgenin kenarları çemberin kirişleri olduğu içindir. Genellikle dörtgenin dışbükey (konveks) olduğu varsayılır, ancak çapraz çevrimsel dörtgenler de vardır. Aşağıda verilen formüller ve özellikler dışbükey durumda geçerlidir.

Bu üçgen konuları listesi, geometriciler tarafından incelenen idealleştirmelerde veya Pascal üçgeni veya üçgen matrisler gibi üçgensel dizilerde olduğu gibi soyut olarak veya fiziksel uzayda somut olarak geometrik şekille ilgili şeyleri içerir. Kelimenin geometrik şekle atıfta bulunmadığı aşk üçgeni gibi metaforları içermez.