İçeriğe atla

Ters kare yasası

Çizgiler kaynaktan çıkan akışı temsil eder. Akış çizgilerinin toplam sayısı kaynağın kuvvetine dayanır ve artan uzaklıkla sabittir. Akış çizgilerinin (birim alana düşen çizgi) büyük yoğunluğu güçlü alan anlamına gelir. Akış çizgilerinin yoğunluğu ters olarak kaynaktan gelen uzaklığın karesiyle oranlıdır çünkü kürenin yüzey alanı yarıçapın karesiyle artar.Bu yüzden, alanın kuvveti ters olarak kaynaktan gelen uzaklığın karesiyle orantılıdır.

Ters kare yasası, fizikte ters kare yasası belirli bir fiziksel miktar veya şiddeti o fiziksel büyüklüğün kaynağından uzaklığın karesiyle ters orantı olduğunu belirten herhangi bir fiziksel yasadır. Denklem şekli:

Radyal ters kare yasasının alanlarının bir ya da daha fazla kaynaklara bağlı sonucu olan bir vektör alanının sapması her yerde yerel kaynakların gücüne orantılıdır ve bundan dolayı sıfır kaynakların dışındadır. Newton’un evrensel yerçekimi yasası ters kare yasasını izler, elektrik, manyetik, ışık, ses ve radyasyon olaylarının etkilerinin yaptığı gibi.

Savunma

Ters kare yasası genelde bazı kuvvet, enerji ya da diğer korunmuş nicelikler aynı oranda üç boyutlu uzayda bir nokta kaynaktan dışarıya doğru yayıldığı zaman başvurur. Bir kürenin yüzey alanı (4πr2  olan) yarıçapın karesiyle orantılı olduğundan, yayılan radyasyon kaynaktan uzaklaşır, o kaynaktan olan uzaklığın karesiyle oranlı olarak artan bir alana yayılır. Bundan dolayı, (doğrudan nokta kaynağına bakan) herhangi bir birim alandan geçen radyasyonun şiddeti nokta kaynağından olan uzaklığın karesiyle ters olarak orantılıdır. Gauss’un yasası uygulanır ve ters kare ilişki için uyum içinde hareket eden herhangi bir fiziksel büyüklük ile kullanılabilir.

Oluşum

Yerçekimi

Yerçekimi kütleye sahip iki nesnenin etkileşimidir.

İki nokta kütlenin arasındaki yer çekimsel etkileşim kuvveti direkt olarak onların kütlelerinin çarpımıyla ve onların ayırma mesafesiyle ters orantılıdır. Kuvvet her zaman çekicidir ve onların merkezinden onları birleştiren çizgi boyunca hareket eder. Eğer her vücuttaki maddenin dağılımı küre biçiminde simetrik ise, sonra nesneler tahmin olmadan nokta kütleler olarak bahsedilebilir, kabuk teorem de gösterildiği gibi.

Aksi takdirde, eğer biz büyük vücutlar arasında etkileşimi hesaplamak isterse, tüm nokta-nokta etkileşim kuvvetleri vektörel olarak eklemek zorundayız ve net etkileşim kesin ters kare olmayabilir. Fakat, eğer büyük vücutlar arasındaki ayrılık onların boyutuna kıyasla daha genişse, sonra iyi bir yaklaşım için, yer çekimi kuvvetini hesaplarken bu kütleler nokta kütle olarak davranması makuldür. Yer çekimi yasası olarak, 1645 de Ismael Bullialdus tarafından bu yasa önerildi, fakat Bullialdus Kepler’in ikinci ve üçüncü yasalarını kabul etmedi, ne de o dairesel hareket için Christiaan Huygen’in çözümünü takdir etmedi (düz bir çizgide hareket merkezi kuvvet tarafından kenara çekti). Doğrusunu söylemek gerekirse, Bullialdus güneşin kuvvetini savunması en uzak noktada ilgi çekiciydi ve günberi de iticiydi. Robert Hooke ve Giovanni Alfonso Borelli ikisi de 1666 da yer çekimini çekici kuvvet olarak açıkladı (Hooke’un dersi ‘’çekimde’’ Kraliyet Cemiyetinde, Londra, 21 Mart’ta;[1] Borelli’nin ‘’Gezegenlerin Teorisi’’ 1666 da sonra yayınlandı[2]). Hooke’un 1670 Gresham dersinde yer çekimi ‘’tüm gökle ilgili vücutlar’’ başvurduğunu açıkladı ve yer çekimiyle hareket etme gücü mesafe ile azalması ve böyle güç vücutlarının yokluğunda düz çizgide hareket etmesi kurallarını ekledi. 1679 yılında, Hooke yer çekimi ters kare ilişkisine sahip olduğunu düşündü ve [[Isaac Newton’a bir mektupta bunu iletti. Newton'un Principia Hooke, Wren ve Halley ile birlikte, ayrı ayrı güneş sistemindeki ters kare yasası takdir ettiğini kabul etmesine rağmen,[3] hem de Bullialdus bazı kredi vererek, Hooke bu prensibin icadını iddia eden Newton hakkında üzücü devam ettirdi.

Elektrostatik

İki elektrik gücüyle yüklü parçacıklar arasındaki etkileşim ya da geri tepme, direkt olarak elektrik yüklerinin çarpımının doğru orantılı olmasına ek olarak, aralarındaki uzaklığın karesi ile ters orantılıdır; bu Coulomb’un yasası olarak bilinir.2 den katsayının sapması 1015 içinde bir kısımdan azdır.[4]

Işık ve başka elektromanyetik radyasyon

Işığın ya da bir nokta kaynaktan (kaynağa dik olan alanın birimi başına düşen enerji) yayılan diğer doğrusal dalgalar yoğunluğu (ya da aydınlığı ya da ışıması) kaynaktan olan uzaklığın karesine ters orantılıdır; bu yüzden, bir nesne (aynı büyüklükte) iki kat daha uzun bir süre tek bir çeyrek enerjiyi (aynı zaman dilimi içinde) alır.

Daha genel olarak, parlaklık, örneğin; bir küresel dalga öncülünün yoğunluğu (ya da yayılma yönünde birim alan başına gücü), (emilimi veya dağılmayla kaynaklanan herhangi bir kayıp olduğu varsayılmaktadır) kaynağından uzaklığın karesi ile ters orantılı olarak değişir.

Örneğin; Güneş’ten gelen radyasyonun yoğunluğu Merkür’ün (0.387 AU) uzaklığındaki metre kare başına düşen 9126 wattır; fakat sadece Dünya’nın (1 AU) uzaklığındaki metre kare başına düşen 1367 watt uzaklıkta yaklaşık 3 kat artış radyasyon yoğunda yaklaşık 9 kat azalışa neden olur.

Eş yönlü olmayan ışıyıcılar için örneğin parabolik antenler, farlar ve lazerler etkin başlangıç noktası uzak kiriş açıklığı arkasında bulunur. Eğer başlangıç noktasına yakınsanız, yarıçapı iki katına gitmek zorunda değilsiniz, bu yüzden sinyal hızla düşer. Başlangıç noktasından uzak olduğun zaman ve halen güçlü yeni bir sinyale sahip olduğun zaman, bir lazer ile birlikte gibi, yarıçapın iki katı kadar uzağa gitmek ve sinyali azaltmak zorundasınız. Bu güçlü sinyale sahip olmak zorunda olduğunuza ya da eş yönlü anten her yönde geniş bir kirişe nispetle dar ışın yönünde anten kazancı olduğu anlamına gelir.

Fotoğrafçılıkta ve tiyatro aydınlatmada, ters kare yasası ‘’düşmek’ ya da bir konu üzerinde aydınlatma farkı ışık kaynağından daha yakın ya da daha fazla hareket ettikçe belirlemek için kullanılır. Çabuk yaklaşımlar için, çift kat olan uzaklık aydınlığı dörtte birine kadar azalttığını hatırlamak yeterlidir; ya da bunun gibi, 1.4’ün (2’nin karekökü) faktörü ile aydınlığın uzaklığı attırtması için ve aydınlığı iki katına çıkartmak için, uzaklığı 0.7’ye (1/2’nin karekökü) azaltır. Aydınlatıcı bir nokta kaynağında olmadığında, ters kare yasası hala sık sık yararlı bir yaklaşımdır ışık kaynağının büyüklüğü konuya uzaklığın 5’te 1’inden az olduğunda, hesaplama hatası 1% ‘den azdır.[5]

Dolaylı bir nokta kaynaktan artan uzaklık ile birlikte iyonize radyasyon, elektromanyetik akıcılıkta (Φ) küçük azalma ters kare yasası kullanılarak hesaplanabilir. Çünkü bir nokta kaynaktan emisyonlar radyal yönlere sahip, onlar dik rastlantı da kesişir. Böyle bir kabuğun alanı 4πr 2 (r merkezden olan radyal uzaklıktır) ‘dir. Kaynak boyutları uzaklıktan çok daha küçük olmazsa bu orantılı olarak pratik durumlarda tutmamasına rağmen ,bu yasa özellikle tanı radyografi ve radyoterapi tedavi planlamasında önemlidir.

Örnek

Mesela bir nokta kaynaktan yayılan toplam güç, örneğin; birçok yönlü izotropik anten, P olsun. Bir kaynaktan (kaynağın büyüklüğüyle karşılaştırılan) büyük uzaklıklarda, kaynaktan uzaklık arttıkça bu güç çok çok büyük küresel yüzeylere dağıtılır. R yarıçaplı kürenin yüzey alanı A= 4πr 2 ‘dir, sonra r uzaklıkta radyasyonun yoğunluğu I (birim alana düşen güç)

Yoğunluk ya da enerji (4’e bölündüğünde) azalır çünkü r çift katlıdır; dB’de ölçüldüğünde, bu uzaklığın iki katına 6.02 d B düşecektir.

Akustikler

Akustik çoğunlukla 1/r yasasını kullanarak kaynaktan verilen bir uzaklıkta (r) ses basıncını ölçer.[6] Yoğunluğu basınç genliği karesiyle doğru orantılı olduğundan, bu ters kare yasasında sadece bir varyasyondur.

Örnek

Akustikte, uzaklık r iki katına çıktıkça nokta kaynaktan yayılan küresel dalga cephesinin ses basıncı 50% azalır; d B’de ölçüldüğünde, azalma hala 6.02 d B’dir, çünkü d B yoğunluk oranını temsil eder. Bu davranış ters kare yasası değildir, fakat ters oranlıdır (ters uzaklık yasası).


Bu parçacık hızının bileşeni için geçerlidir, bu anlık ses basıncı ile eş evrelidir.


Yakın alanında ses basıcıyla faz dışında 90 ° olan parçacık hızının bir kareleme bileşenidir ve zaman ortalaması alınmış enerjiye ya da sesin yoğunluğuna katkıda bulunmaz. Ses yoğunluğu RMS ses basıncı ve RMS parçacık hızının eş evreli bileşeninin çarpımıdır, onların ikisi de ters orantılıdır. Dolayısıyla, yoğunluk ters kare davranışını takip eder.

Alan teorisi yorumlama

3 boyutlu uzayda bir irrasyonel vektör alanı için ters kare yasası sapmanın kaynak dışında sıfır olan özelliğine denk gelir. Bu daha yüksek boyutlara genellenebilir. Genelde, n boyutlu Euclidean uzayında irrasyonel vektör alanı için, vektör alanının yoğunluğu ‘’ I ’’ ters (n − 1)th güç yasası takibi ardından uzaklık ‘’ r ‘’azalır.

,

Kaynak dışındaki uzayın serbest sapma olduğu verilmiştir.

Tarih

14. yüzyılın Oxford hesaplayıcılarından John Dumbleton grafik formunda fonksiyonel ilişkileri açıklayan ilklerden biridir. O, ‘’bir düzgün difform hareketin enlem ortalama derecesine karşılığını’’ belirten teoremin kanıtını verdi ve onun aydınlatmanın yoğunluğunun doğrusal olarak uzaklığa oranlı olmadığını, fakat ters kare yasasını açığa çıkaramadığını belirten Summa logicæ et philosophiæ naturalis (ca. 1349) de aydınlatmanın yoğunluğundaki sayısal azalışı çalışmak için bu metodu kullandı.[7]

Onun Ad Vitellionem paralipomena, quibus astronamiæ pars optica traditur (1604)1. Kitabının 9. Önermesinde, gökbilimci Johannes Kepler nokta kaynaktan çıkan ışığın yayılımının ters kare yasasına uyup uymadığını tartıştı.[8]

ORİJİNAL:

Sicut se habent spharicae superificies, quibus origo lucis pro centro est, amplior ad angustiorem: ita se habet fortitudo seu densitas lucis radiorum in angustiori, ad illamin in laxiori sphaerica, hoc est, conversim. Nam per 6. 7. tantundem lucis est in angustiori sphaerica superficie, quantum in fusiore, tanto ergo illie stipatior & densior quam hic.

ÇEVİRİ:

Işığın kaynağının merkez olduğu küresel yüzeyler (oranı) daha genişten dara doğru iken, bu yüzden dar yüzeyde ışık ışınlarının yoğunluğu ya da dayanıklılığı, daha geniş olan küresel yüzeylere doğrudur, yani ters olarak. 6 & 7 önermelerine göre, dar küresel yüzeyde daha fazla ışık vardır, daha geniş olana göre, bu yüzden buradaki yoğunluk ve sıkıştırılma oradakinden çok daha fazladır.

1645'te onun Astronomia Philolaica … kitabında, Fransız gökbilimci Ismael Bullialdus (1605-1694) Johannes Kepler’in ‘’ yerçekimi’’ uzaklığın tersi ile zayıfladığı önerisini reddetti; onun yerine Bullialdus ‘’yerçekimi’’ uzaklığın karesinin tersiyle zayıfladığını tartıştı.[9]

ORİJİNAL:

Virtus autem illa, qua Sol prehendit seu harpagat planetas, corporalis quae ipsi pro manibus est, lineis rectis in omnem mundi amplitudinem emissa quasi species solis cum illius corpore rotatur: cum ergo sit corporalis imminuitur, & extenuatur in maiori spatio & intervallo, ratio autem huius imminutionis eadem est, ac luminus, in ratione nempe dupla intervallorum, sed eversa.

ÇEVİRİ:

Güneş gezegenleri zapteder ya da yakalar bir güçle ve maddesel olma, ellerin şeklinde fonksiyonlar, dünyanın bütün genişliği boyunca diz çizgiler olarak yayılır ve güneşin türleri gibi, bu güneşin gövdesiyle döner; şimdi, onun maddesel olduğunu görme, o daha güçsüz ve daha büyük uzaklıkta ya da aralıkta azalmış olur ve onun gücündeki bu azalma oranının ışık durumundakiyle aynıdır, yani, eş oranda, fakat ters olarak uzaklığın karesiyle (yani 1/d2).

İngiltere'de, İngiliz kilisesinin piskoposu Seth Ward (1617-1689) onun eleştirisinde ‘’In Ismaealis Bullialdi astronomiae philolaicae fundamenta inquisitio brevis (1653)’’ Bullialdus’un fikirlerini ve onun Astronomia geometrica (1656) kitabında Kepler’in gezegen astronomisini halka ilan etti.

1663-1664'te, İngiliz bilim adamı Robert Hooke onun Micro graphia (1666) içinde, başka şeyler arasında, atmosferin ve yüzeydeki barometrik basıncın yüksekliğinin arasındaki ilişkinin tartışıldığı kitabını yazıyordu. Dünyanın yüzeyinin herhangi bir birim alanında etkisi olan atmosferin hacmi kesik (dünyanın merkezinden uzay boşluğuna genişleyen; açıkçası dünyanın yüzeyinde sadece dünyanın yüzeyinden uzay ayılarına kadar koninin bölümü) bir konidir, çünkü atmosfer küre olan dünyayı çevreler. Koninin hacmi onun uzunluğunun küpüne doğru orantılı olmasına rağmen, Hooke dünyanın yüzeyinde havanın basıncı atmosferin yüksekliği yerine doğru orantılı olmasını tartıştı, çünkü yerçekimi yükseklikle azalır. Hooke açık bir şekilde bunu belirtmemesine rağmen, onun önerdiği ilişki eğer sadece yerçekimi dünyanın merkezinden uzaklığın ters karesiyle azalırsa doğru olabilecekti.[10]

Ayrıca bakınız

Kaynakça

  1. ^ Thomas Birch, The History of the Royal Society of London, … (London, England: 1756), vol. 2, sayfa 68-73 7 Temmuz 2014 tarihinde Wayback Machine sitesinde arşivlendi.; sayfa 70-72.
  2. ^ Giovanni Alfonso Borelli, Theoricae Mediceorum Planetarum ex Causius Physicis Deductae 7 Temmuz 2014 tarihinde Wayback Machine sitesinde arşivlendi. [Galilei uyduları teorisini(hareket) fiziksel nedenlerle çıkarımı.] (Florence, (Italy): 1666).
  3. ^ Principia kitabının İngilizce çeviri örneği, sayfa 66'da 29 Nisan 2016 tarihinde Wayback Machine sitesinde arşivlendi..
  4. ^ Williams, Faller, Hill, E.; Faller, J.; Hill, H. (1971), "New Experimental Test of Coulomb's Law: A Laboratory Upper Limit on the Photon Rest Mass", Physical Review Letters, 26 (12), ss. 721-724, Bibcode:1971PhRvL..26..721W, doi:10.1103/PhysRevLett.26.721 
  5. ^ Ryer,A. (1997) "The Light Measurement Handbook", ISBN 0-9658356-9-3 s.26
  6. ^ "Inverse-Square law for sound". 9 Ağustos 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Haziran 2008. 
  7. ^ John Freely, Before Galileo: The Birth of Modern Science in Medieval Europe (2012)
  8. ^ Latinceden çevirisin yapıldığı yer: Kepler Ad Vitellionem paralipomena: Gal, O. & Chen-Morris, R.(2005) "The Archaeology of the Inverse Square Law: (1) Metaphysical Images and Mathematical Practices," 22 Aralık 2015 tarihinde Wayback Machine sitesinde arşivlendi. History of Science, 43 : 391-414 ; özellikle s. 397.
  9. ^ Latinceden çevirisin yapıldığı yer: Bullialdus Astronomia Philolaica: O'Connor, John J. and Roberson, Edmund F. (2006) "Ismael Boulliau" 30 Kasım 2016 tarihinde Wayback Machine sitesinde arşivlendi., The MacTutor History of Mathematics Archive, School of Mathematics and Statistics, University of Saint Andrews, Scotland.
  10. ^ Robert Hooke, Micrographia … (London, England: John Martyn, 1667), page 227: 22 Aralık 2015 tarihinde Wayback Machine sitesinde arşivlendi. "[I say a Cylinder, not a piece of a Cone, because, as I may elsewhere shew in the Explication of Gravity, that triplicate proportion of the shels of a Sphere, to their respective diameters, I suppose to be removed in this case by the decrease of the power of Gravity.]"

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Optik</span> fizik biliminin bir alt dalı

Optik, ışık hareketlerini, özelliklerini, ışığın diğer maddelerle etkileşimini inceleyen; fiziğin ışığın ölçümünü ve sınıflandırması ile uğraşan bir alt dalı. Optik, genellikle gözle görülebilen ışık dalgalarının ve gözle görülemeyen morötesi ve kızılötesi ışık dalgalarının hareketini inceler. Çünkü ışık bir elektromanyetik dalgadır ve diğer elektromanyetik dalga türleri ile benzer özellikler gösterir.

<span class="mw-page-title-main">Kuvvet</span> kütleli bir cisme hareket kazandıran etki

Fizik disiplininde, kuvvet bir cismin hızını değiştirmeye zorlayabilen, yani ivmelenmeye sebebiyet verebilen - hızında veya yönünde bir değişiklik oluşturabilen - bir etki olarak tanımlanır, bu etki diğer kuvvetlerle dengelenmediği müddetçe geçerlidir. Itme ya da çekme gibi günlük kullanımda yer alan eylemler, kuvvet konsepti ile matematiksel bir netliğe ulaşır. Kuvvetin hem büyüklüğü hem de yönü önemli olduğundan, kuvvet bir vektör olarak ifade edilir. Kuvvet için SI birimi, newton (N)'dur ve genellikle F simgesi ile gösterilir.

Kütleçekim ya da çekim kuvveti, kütleli her şeyin gezegenler, yıldızlar ve galaksiler de dahil olmak üzere birbirine doğru hareket ettiği doğal bir fenomendir. Enerji ve kütle eşdeğer olduğu için ışık da dahil olmak üzere her türlü enerji kütleçekime neden olur ve onun etkisi altındadır.

<span class="mw-page-title-main">Yerçekimi</span> Dünyanın kütleçekimi

Yer çekimi, kütleçekimi ve merkezkaç kuvvetinin birleşik etkisi nedeniyle nesnelere aktarılan net ivmedir. Yönü bir şakul topuzuyla çakışan, gücü veya büyüklüğü normuyla temsil edilen vektörel bir niceliktir.

<span class="mw-page-title-main">Yörünge</span> bir gökcisminin bir diğerinin kütleçekimi etkisi altında izlediği yola yörünge adı verilir

Gök mekaniğinde yörünge veya yörünge hareketi, bir gezegenin yıldız etrafındaki veya bir doğal uydunun gezegen etrafındaki veya bir gezegen, doğal uydu, asteroit veya lagrange noktası gibi uzaydaki bir nesne veya konum etrafındaki yapay uydunun izlediği kavisli bir yoldur. Yörünge, düzenli olarak tekrar eden bir yolu tanımlamakla birlikte, tekrar etmeyen bir yolu da ifade edebilir. Gezegenler ve uydular Kepler'in gezegensel hareket yasalarında tanımlandığı gibi, kütle merkezi elips biçiminde izledikleri yolun odak noktasında olacak şekilde yaklaşık olarak eliptik yörüngeleri takip ederler.

Fizikte, kütle, Newton'un ikinci yasasından yararlanılarak tanımlandığında cismin herhangi bir kuvvet tarafından ivmelenmeye karşı gösterdiği dirençtir. Doğal olarak kütlesi olan bir cisim eylemsizliğe sahiptir. Kütleçekim kuramına göre, kütle kütleçekim etkileşmesinin büyüklüğünü de belirleyen bir çarpandır (parametredir) ve eşdeğerlik ilkesinden yola çıkılarak bir cismin kütlesi kütleçekimden elde edilebilir. Ama kütle ve ağırlık birbirinden farklı kavramlardır. Ağırlık cismin hangi cisim tarafından kütleçekime maruz kaldığına göre ve konumuna göre değişebilir.

<span class="mw-page-title-main">Elektrik akımı</span> elektrik yükü akışı

Elektrik akımı, elektriksel akım veya cereyan, en kısa tanımıyla elektriksel yük taşıyan parçacıkların hareketidir. Bu yük genellikle elektrik devrelerindeki kabloların içerisinde hareket eden elektronlar tarafından taşınmaktadır. Ayrıca, elektrolit içerisindeki iyonlar tarafından ya da plazma içindeki hem iyonlar hem de elektronlar tarafından taşınabilmektedir.

<span class="mw-page-title-main">Elektrik alanı</span>

Elektriksel alan, kıvıl alan, elektrik alan veya elektrik alanı, elektriksel yükü veya manyetik alanı çevreleyen uzayın bir özelliği olup, içerisinde bulunan yüklü nesnelere elektriksel güç aracılığı ile etki eder. Kavram fiziğe Michael Faraday tarafından kazandırılmıştır.

<span class="mw-page-title-main">Elektrostatik</span> durağan elektrik yüklerinin incelenmesi

Elektrostatik, duran veya çok yavaş hareket eden elektrik yüklerini inceleyen bir bilim dalıdır.

<span class="mw-page-title-main">Rayleigh saçılması</span>

Rayleigh saçılımı, ışığın veya diğer elektromanyetik radyasyonun, ışığın dalga boyundan daha küçük tanecikler tarafından saçılımını ifade eder. Bu isim, İngiliz fizikçi Lord Rayleigh'ın adına ithafen verilmiştir.

<span class="mw-page-title-main">Newton'un evrensel kütleçekim yasası</span> Fizik kanunu

Newton'un evrensel çekim yasası (klâsik mekaniğin bir parçasıdır) aşağıdaki gibi ifade edilir;

Her bir noktasal kütle diğer noktasal kütleyi, ikisini birleştiren bir çizgi doğrultusundaki bir kuvvet ile çeker. Bu kuvvet bu iki kütlenin çarpımıyla doğru orantılı, aralarındaki mesafenin karesi ile ters orantılıdır:

Burada:

  • F iki kütle arasındaki çekim kuvvetinin büyüklüğü,
  • G Evrensel çekim sabiti 6.67 × 10-11 N m2 kg-2,
  • m1 birinci kütlenin büyüklüğü,
  • m2 ikinci kütlenin büyüklüğü,
  • r ise iki kütle arasındaki mesafedir.
<span class="mw-page-title-main">Kurtulma hızı</span> bir cismin kendisini bağlayan kütleçekim alanından kurtulak için varması gereken hız

Fizikte, kurtulma hızı kütleçekim alanındaki herhangi bir cismin kinetik enerjisinin söz konusu alana bağıl potansiyel enerjisine eşit olduğu andaki hızıdır. Genellikle üç boyutlu bir uzayda bulunan cismin kendisini etkileyen kütleçekim alanından kurtulabilmesi için ulaşması gereken sürati ifade eder.

<span class="mw-page-title-main">Kepler'in gezegensel hareket yasaları</span>

Kepler'in gezegensel hareket yasaları, Güneş Sisteminde bulunan gezegenlerin hareketlerini açıklayan üç matematiksel yasadır. Alman matematikçi ve astronom Johannes Kepler (1572-1630) tarafından keşfedilmişlerdir.

Fraunhofer kırınımı ya da uzak-alan kırınımı dalganın uzak bölgelerde yayıldığı durumlarda uygulanan bir Kirchhoff-Fresnel kırınımı yaklaşımıdır.

<span class="mw-page-title-main">Mercek</span>

Mercek ya da lens ışığın yönünü değiştiren (kıran), ışık ışınlarını birbirine yaklaştıran ya da uzaklaştıran optik alet.
Basit mercek tek bir optik elemanın kullanıldığı, bileşik mercek ise iki optik elemanın bir arada olduğu mercek tipidir. Bileşik mercek, basit mercek kullanıldığında ortaya çıkan sapınç olayının etkisini azaltmak için kullanılır. Mercekler genelde camdan ve saydam plastikten yapılır. Lensler, gereken şekle göre taşlanır, parlatılır veya kalıplanır. Bir mercek, ışığı odaklamadan kıran bir prizmadan farklı olarak, bir görüntü oluşturmak için ışığı odaklayabilir. Mikrodalga lensler, elektron lensler, akustik lensler veya patlayıcı lensler gibi görünür ışık dışındaki dalgaları ve radyasyonu benzer şekilde odaklayan veya dağıtan cihazlara da "mercekler" denir.

Lambert kosinüs yasasına göre, optikte, ideal dağınık bir şekilde yansıtılan yüzeyden veya ideal dağınık bir ısıtıcıdan gözlemlenen radyant yoğunluğu veya parlaklık yoğunluğu, gözlemcinin görüş yeri ve yer arasında kalan teta açısı ile doğru orantılıdır. Bu yasa ‘kosinüs emisyon yasası’ ya da ‘Lambert emisyon yasası’ olarak da bilinmektedir. Ayrıca, bu yasa 1760 yılında Johann Heinrich Lambert'ın ‘Photometria’ adı kitabı yayınlandıktan sonra isimlendirilmiştir.

De motu corporum in gyrum, Isaac Newton’un 1684 Kasım’ında Edmond Halley’e gönderdiği el yazısı müsveddelerin tahmin edilen başlığıdır. Newton bu müsveddeleri, Halley’in Newton’u problemler üzerine sorguladığı ve Halley’in fikirleri ve Sör Christopher Wren ile Robert Hooke dahil, onun Londra’daki bilimsel camiası hususlarında fikir jimnastiğinin yapıldığı o yıl içinde daha önce Halley tarafından yapılan bir ziyareti takiben göndermiştir.

<span class="mw-page-title-main">Kepler yörüngesi</span> üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklayan kavram

Gök mekaniği olarak, Kepler yörüngesi üç boyutlu uzayda iki boyutlu bir yörünge düzlemi oluşturan bir elips, parabol, hiperbol benzeri bir yörünge cismininin hareketini açıklar.. Kepler yörüngesi yalnızca nokta iki cismin nokta benzeri yerçekimsel çekimlerini dikkate alır, atmosfer sürüklemesi, güneş radyasyonu baskısı, dairesel olmayan cisim merkezi ve bunun gibi bir takım şeylerin diğer cisimlerle girdiği çekim ilişkileri nedeniyle ihmal eder. Böylece Kepler problemi olarak bilinen iki-cisim probleminin, özel durumlara bir çözüm olarak atfedilir. Klasik mekaniğin bir teorisi olarak, aynı zamanda genel görelilik etkilerini dikkate almaz. Kepler yörüngeleri çeşitli şekillerde altı yörünge unsurları içine parametrize edilebilir.

Fizik'te, yerçekimi teorileri kütleli cisimlerin hareket mekanizmalarını kapsayan etkileşimleri esas alır. Antik zamanlardan bu yana birçok Yerçekimi teorisi ortaya atılmıştır.

<i>Astronomia nova</i> Kepler tarafından yazılan kitap

Astronomia nova Astronom Johannes Kepler'in Mars'ın hareketleriyle ilgili on yıl süren araştırmalarının sonuçlarını içeren ve 1609'da yayınlanan kitabıdır.