İçeriğe atla

Ters itme

Airbus A321'in CFM56 motorunda yer alan itme ters çeviriciler

Ters itme, revers veya itme tersindirme, bir uçak motorunun itme kuvvetinin geçici olarak saptırılmasıdır, böylece motorun itiş gücü uçağın önüne doğru yönlendirilerek uçağın yavaşlaması sağlanır. Ters itme sistemleri, iniş esnasında uçağın iniş takımının yere temasından hemen sonra yavaşlamaya yardımcı olmak, frenlerdeki aşınmayı azaltmak ve daha kısa iniş mesafeleri sağlamak için birçok jet uçağında bulunur. Bu tür cihazlar uçağı önemli ölçüde etkiler ve havayollarının güvenli operasyonları için önemli kabul edilir. Ölümcül olanlar dahil olmak üzere, itme geri dönüş sistemlerini içeren kazalar olmuştur.

Jet uçaklardaki ters itme sistemlerine benzer amaçla değişken hatveli pervanelere sahip uçaklarda pervane hatvesi negatif olacak şekilde değiştirilerek uçağın yavaşlaması sağlanabilir. Bir gemi için eşdeğer kavrama tornistan denir.

İlke ve kullanım alanları

Ters itme sistemine sahip çok az sayıda savaş uçağından biri olan Panavia Tornado'nun RB.199 motorunun hedef tipi ters itme sistemi yarı aktif durumda

Bir uçağın iniş süreci, uçağın piste teker koyması, taksi hızına yavaşlaması ve nihayetinde tamamen durmasından oluşur. Bununla birlikte, çoğu ticari jet motoru rölantide olsa bile ileri yönde itme üretmeye devam eder.[1] Çoğu modern uçağın iniş takımının frenleri normal koşullarda uçağı durdurmak için yeterlidir, ancak güvenlik amacıyla ve frenler üzerindeki stresi azaltmak için[2] başka bir yavaşlama yöntemine ihtiyaç vardır. Pistte kar veya yağmur gibi faktörlerin frenlerin etkinliğini azalttığı kötü hava içeren senaryolarda ve iptal edilen kalkışlar gibi acil durumlarda bu ihtiyaç daha belirgindir.[3]

Basit ve etkili bir yöntem, jet motorunun egzoz akışının yönünü tersine çevirmek ve yavaşlamak için motorun gücünü kullanmaktır. İdeal durum egzoz gazlarının akış yönünü tersine çevirerek doğrudan ileriye doğru yönlendirmektir; ancak aerodinamik nedenlerle bu mümkün değildir. Ters itme sistemlerinde egzoz gazları en iyi verimi alabilmek için 135° açıyla saptırılır. Ters itme uçağın havadaki hızını azaltmak için uçuş esnasında da kullanılabilir, ancak bu modern uçaklarda yaygın değildir.[4] Jet motorlarında yaygın olarak kullanılan üç tip itme geri vites sistemi vardır: hedef (İngilizce: target), deniz kabuğu (İngilizce: clam-shell) ve soğuk akış (İngilizce: cold stream) sistemleri. Değişken hatveli pervanelerle donatılmış bazı pervaneli uçaklar, pervane kanatlarının hatvesini (açısını) değiştirerek itmeyi tersine çevirebilir. Ticari jet yolcu uçaklarının çoğu bu tür cihazlara sahiptir; askeri havacılıkta da uygulamaları vardır.[5]

Ters itme sistemi çeşitleri

Küçük uçaklar, özel uygulamalar haricinde, tipik olarak ters itme sistemlerine sahip değildir. Öte yandan, büyük uçaklar (12.500 pound'dan ağır olanlar) neredeyse her zaman ters itme yeteneğine sahiptir. Pistonlu motor, turboprop ve jet uçaklarının hepsi itme geri dönüş sistemlerini içerecek şekilde tasarlanabilir.

Pervaneli uçaklar

E-2C Hawkeye'ın değişken hatve pervaneleri
Hedef tipi ters itme sisteminin çalışması
Fokker 100'ün motorlarında yer alan 'kova' tipi itme ters çevirici

Pervaneli uçaklar, kontrol edilebilir hatveli pervanelerinin açısını değiştirerek ters itme kuvveti üretebilir, böylece pervaneler itme kuvvetlerini ileri doğru yönlendirir. Bu ters itme özelliği, kontrol edilebilir hatve pervanelerin geliştirilmesi ile pervane kanatlarının açısını değiştirerek çok çeşitli koşullar altında motor gücünü verimli bir şekilde kullanmak için kullanılabilir hale geldi. Tek motorlu uçaklarda ters itme sistemi genellikle yoktur. Bununla birlikte, PAC P-750 XSTOL,[6] Cessna 208 Caravan ve Pilatus PC-6 Porter gibi bazı tek motorlu turboprop uçaklarda bu özellik mevcuttur.[]

Ters itme özelliğinin özel bir uygulaması, çok motorlu deniz uçakları ve uçan gemilerde kullanımıdır. Bu uçaklar suya inerken geleneksel bir frenleme yöntemine sahip değildir; yavaşlamak veya durdurmak için manevra kabiliyetlerine, ters itme gücüne ve suyun sürüklenmesine güvenmelidir. Ek olarak, su üzerinde manevra yapmak için genellikle ters itme gereklidir, ters itme sistemleri bir rıhtım veya plajdan ayrılmak için gerekli olabilecek keskin dönüşler yapmak veya uçağı geriye doğru itmek için kullanılır.[]

Jet uçaklar

Jet motorları kullanan uçaklarda ters itme, jet egzozunun ileri yönlendirilmesi ile sağlanır. Motor ters yönde dönmez; bunun yerine egzoz gazlarını ileriye doğru yönlendirmek için itme ters çevirme cihazları kullanılır. Yüksek bypass oranlı motorlar, itme gücünün çoğunluğu fan hava akışı ile üretildiğinden, genellikle sadece bu akışın yönünü değiştirerek itişi tersine çevirir. Yaygın kullanılan üç jet motoru itme geri dönüş sistemi vardır:[4]

Hedef tipi

Hedef tipi ters itme sistemi, sıcak gaz akışını tersine çevirmek için bir çift hidrolik olarak çalıştırılan 'kova' tipi kapı kullanır. İleri itme için bu kapılar motorun nozulu önüne getirilerek egzoz gazının yönü değiştirilir. Bu sistem ilk kez Boeing 707'de uygulanmıştır,[7] bugün hala yaygın olan şekilde iki ters çevirici kova, menteşeye yerleştirildiğinde egzozun arkaya doğru akışını engeller ve gazları ileriye doğru bir açıyla yönlendirir. Bu tip ters çevirici, çalışması esnasında motorun arkasında görülebilir.[4]

Deniz kabuğu tipi

Deniz kabuğu tipi sistemler pnömatik olarak çalıştırılır. Etkinleştirildiğinde ters yönlü kanalları açmak ve normal egzoz çıkışını kapatmak için döner ve itmenin ileri yönlendirilmesine neden olur.[4] Kademeli ters itme sistemi turbofan motorlarda yaygın olarak kullanılır. Turbojet motorlarda, deniz kabuğu tipi sistem sadece fan hava akışını kullandığından ve ileri itme gücü üretmeye devam eden motor ana türbinini etkilemediğinden, bu sistem hedef tipi sistemden daha az etkilidir.[1]

VC10'da yer alan Rolls Royce Conway turbofan motorlarının deniz kabuğu tipi ters itme sistemi.

Soğuk akış tipi

Airbus A340-300'ün CFM-56 motorlarında görülen döner kapı ters itme sistemi

Turbojet ve düşük bypasslı turbofan motorlarda kullanılan iki tipe ek olarak, bazı yüksek bypasslı turbofan motorlarda üçüncü tip bir itme ters çevirici bulunur. Yüksek bypass oranlı motorlarda bypass kanalındaki kapılar, motorun fan bölümü tarafından hızlanan ancak yanma odasından geçmeyen (bypass havası olarak adlandırılır) havayı ters itme sağlayacak şekilde yönlendirmek için kullanılır.[3] Soğuk akış tüpü ters itki sistemi bir hava motoru tarafından etkinleştirilir. Motorun normal çalışma esnasında ters itme kapıları kapalıdır. Ters itme modunda ise sistem, hava akışını ters yönde yönlendirmek için kapıları açar.[4] Bu sistem hem fanın hem de motor türbininin egzoz akışını yönlendirebilir.[5]

Soğuk akış sistemi yapısal bütünlüğü, güvenilirliği ve çok yönlülüğü ile bilinir. Ters itme aktivasyonu sırasında, uçak motoru nacelinin çevresine monte edilen bir manşon, motor fan akışını yeniden yönlendiren kapıları ortaya çıkarmak için arkaya hareket eder. Bu tarz itme ters çevirme sistemleri ağır olabilir ve büyük motorları barındıran nacellere entegre etmek zor olabilir.[8]

Bir Boeing 777-300'ün aktive edilmiş soğuk akış tipi itme ters çeviricisi.

Kullanım

Bir Boeing 747-8'de görülen ve ana gaz kollarının önünde yer alan ters itme kolları

Kokpitlerin çoğunda, ters itme sistemi motor gaz kolları rölanti ayarındayken geri çekilerek aktif hale getirilir.[1] Ters itme tipik olarak aerodinamik kaldırma ve yüksek hızın iniş takımında bulunan frenlerin etkinliğini sınırladığı durumlarda yavaşlamayı iyileştirmek için iniş takımlarının yere temasından hemen sonra genellikle spoilerler ile birlikte uygulanır. Ters itme kuvveti, motor gaz kollarına bağlı kollar kullanılarak veya gaz kollarını bir ters itme 'geçidine' hareket ettirerek daima manuel olarak seçilir.

Ters itme ile sağlanan erken yavaşlama, iniş mesafesini %25 veya daha fazla azaltabilir.[5] Ancak havacılık regülasyonları düzenlemeler, bir uçağın tarifeli havayolu hizmetinin bir parçası olarak bir havaalanına inişe uygunluk sertifikası alabilmesi için itme tersine çevirme kullanmadan piste inebilmesi gerektiğini belirtmektedir.

Uçağın hızı azaldıktan sonra ters itki sistemi, motorun yerdeki şeyleri içine çekmesini ve yabancı cisim hasarına uğramasını önlemek için kapatılır. Koşullar gerektiriyorsa, ters itme durmak için veya hatta uçağı geriye itmek için kullanılabilir, ancak uçak römorkörleri bu amaç için daha yaygın olarak kullanılır. Ters itme, uçağı havaalanı kapısından geri itmek için kullanıldığı zaman bu manevra powerback olarak adlandırılır. Bazı üreticiler buzlu koşullar altında bu prosedürün kullanılmasına karşı uyarırlar; kar veya sulu karla kaplı zeminde ters itme, sulu kar, su ve buz çözücülerin havaya karışmasına ve kanat yüzeylerine yapışmasına neden olabilir.[9]

Ters itme kuvvetinin tam gücü istenmiyorsa, sistem gaz kelebeği tam güçten daha düşük bir değere ayarlanmış, hatta rölanti gücüne bile ayarlanmış olarak çalıştırılabilir; bu motor bileşenlerindeki stresi ve aşınmayı azaltır. Özellikle buzlu veya kaygan koşullarda veya motorun jet itişinin çevrede hasara neden olabileceği durumlarda, motorların rölantideki itme gücünü ortadan kaldırmak için bazen ters itme seçilir.[]

Uçuş sırasında çalışma

Boeing C-17 Globemaster III'te powerback'in sebep olduğu ve görünür hale gelmiş bir girdap

Bazı uçaklar, özellikle bazı Sovyet ve Rus uçakları uçuşta güvenli bir şekilde ters itmeyi kullanabilirler, ancak bunların çoğu pervanelidir. Birçok ticari uçak uçuş esnasında ters itme sistemlerini çalıştıramaz. Uçuş sırasında ters itmenin çeşitli avantajları vardır. Hızlı yavaşlama sağlayarak çabuk hız değişimi sağlar. Ayrıca, normalde dik dalışlarla ilişkili hız artışını önleyerek, özellikle savaş bölgeleri gibi düşman ortamlarda ve iniş için dik açılı yaklaşmalar yaparken faydalı olabilecek hızlı irtifa kaybına izin verir.[]

Douglas DC-8 serisi uçaklar, 1959'da hizmete girmesinden bu yana uçuş sırasında ters itme kullanabilirler. Ters itme kabul edilebilir hızlarda hızlı alçalmayı kolaylaştırmak için güvenli ve etkilidir, ancak uçağın önemli ölçüde sarsılmasına sebep olur. Bu nedenle kullanımı yolcu uçuşlarında daha az yaygındı ve yolcu konforunun bir sorun olmadığı kargo ve havalimanı değiştirme uçuşlarında daha yaygındı.[10]

120 ile 180 koltuklu bir uçak olan Hawker Siddeley Trident, ters itme kullanarak 10.000 ft/dakika (3.050 m/dakika) orana dek çabuk alçalma kabiliyetine sahipti, ancak bu özellik nadiren kullanılmıştır.

Concorde süpersonik uçağı alçalma oranını artırmak için havada ters itme kullanabilir. Sadece içteki motorlarda yer alan ve sadece subsonik uçuşta ve uçak 30.000 feet'in (9.144 metre) altında kullanılabilen sistem ile uçağın alçalma oranı 10.000 ft / dakikadır.[]

Boeing C-17 Globemaster III, uçuşta ters itme kullanan birkaç modern uçaktan biridir. Boeing tarafından üretilen uçaklar, dik taktik alçalmaları kolaylaştırmak için savaş durumunda dört motora da ters itme gücü uygulayarak 15.000 ft/dak (4.600 m/dak) orana kadar alçalma sağlayabilir. 1969'da hizmete giren Lockheed C-5 Galaxy de içteki iki motorunda uçuş sırasında ters itme özelliğine sahiptir.[11]

Kasım 2005'te emekliye ayrılan İsveç savaş uçağı Saab 37 Viggen, hem inişten önce havadayken hem de iniş sonrasında ve taksi esnasında ters itme sistemini kullanabiliyordu. Bu sayede uçak kısa mesafede iniş yapabiliyor ve İsveç'teki birçok yolu savaş esnasında iniş pisti olarak kullanabiliyordu.

Son derece modifiye edilmiş bir Grumman Gulfstream II olan Shuttle Eğitim Uçağı, Uzay Mekiği aerodinamiğini simüle etmeye yardımcı olmak için uçuşta ters itme sistemiyle donatılmıştı, böylece astronotlar iniş simülasyonları yapabiliyorlardı. Rus Buran uzay mekiğini simüle etmesi için değiştirilmiş Tupolev Tu-154'te de benzer bir teknik kullanılmıştır.[]

Etki

Air Canada B777-333ER (C-FITL) Montréal-Trudeau Uluslararası Havaalanına ters itme ile iniş yapıyor

Üretilen itme ve güç uçağın hızı ile orantılıdır, bu da ters itmeyi yüksek hızlarda daha etkili kılar.[2] Maksimum etki için, iniş takımının yere temasından hemen sonra uygulanmalıdır.[1] Düşük hızlarda etkinleştirilirse motorlarda yabancı cisim hasarı mümkündür. Hem ters itme etkisi hem de spoilerin etkisi nedeniyle, iniş esnasında anlık olarak uygulanan ters itmenin uçağı bir anlığına tekrar havaya kaldırması tehlikesi vardır. Böyle bir olaya yatkın olan uçak modellerinin pilotları, ters itme uygulamadan önce yerde sağlam bir pozisyon elde etmeye dikkat etmelidir. Burun tekerleği yerle temas etmeden önce uygulanırsa, uçağın burun tekerleği ile yönlendirilmesi, yön kontrolünü sağlamanın tek yolu olduğundan, uçağın daha yüksek ters itme olan tarafa doğru kontrol edilemeyen bir şekilde sapmasına sebep olacak asimetrik itme riski vardır.

Ters itme modu, uçak çalışma süresinin sadece bir kısmı için kullanılır, ancak uçakları tasarım, ağırlık, bakım, performans ve maliyet açısından büyük ölçüde etkiler. Bu dezavantajlar önemlidir, ancak ters itme sistemleri fren kuvveti, iniş sırasında yön kontrolü, normal frenleme etkinliğinin azaldığı kirli pistlerde kalkış iptali ve yer operasyonlarında ilave güvenlik sağlanması için yardımcı olur. Havayolları, ters itme sistemlerini maksimum uçak işletim güvenliğine ulaşmanın hayati bir parçası olarak görmektedir.[8]

Ters itme ile ilgili kazalar ve olaylar

Uçuş sırasında ters itme sistemlerinin çalıştırılması, birçok uçağın düşmesine doğrudan katkıda bulundu:

  • 11 Şubat 1978'de, bir Boeing 737-200 olan Pacific Western Airlines 311 sayılı uçuş, Cranbrook Havalimanı'nda iniş iptali gerçekleştirirken düştü. Sol itme ters çeviricisi düzgün bir şekilde kapanmamıştı; tırmanış sırasında açılarak uçağın sola dönmesine ve düşmesine neden oldu. 5 mürettebat ve 44 yolcudan sadece 6 yolcu ve bir uçuş görevlisi hayatta kaldı.
  • 9 Şubat 1982'de Japan Airlines Flight 350, Tokyo Haneda Havaalanı'na iniş esnasında düştü. Douglas DC-8 tipi uçak, dört motorundan ikisine zihinsel olarak dengesiz kaptan pilot tarafından kasıtlı olarak ters itme uygulanması sonucu piste 1.000 fit (300 m) mesafede düştü; kaza 24 yolcunun ölümüyle sonuçlandı.[12][13][14]
  • 29 Ağustos 1990'da, Birleşik Devletler Hava Kuvvetleri'ne ait bir Lockheed C-5 Galaxy, Almanya'daki Ramstein Hava Üssü'nden kalkışından kısa bir süre sonra düştü. Uçak pistten tırmanmaya başladığında, itme ters çeviricilerinden biri aniden devreye girdi. Bu, uçağın kontrolünün kaybına ve müteakip kazaya neden oldu. Uçaktaki 17 kişiden dördü kazadan sağ kurtuldu.
  • 26 Mayıs 1991'de Lauda Air Flight 004 uçuşunda sol motorun itme ters çeviricisinin yanlışlıkla açılması, uçağın hızlı bir dalış yapmasına ve havada parçalanmasına neden oldu.[15] Boeing 767-300ER tipi uçaktaki 213 yolcu ve 10 mürettebatın tamamı öldü.
  • 31 Ekim 1996'da, TAM Linhas Aéreas Flight 402 uçuşu, Brezilya'nın São Paulo kentindeki Congonhas-São Paulo Uluslararası Havaalanı'ndan kalkışından kısa bir süre sonra iki apartman ve birkaç eve çarparak düştü. Kazada 90 yolcu ve 6 mürettebat üyesi ile 3 kişi öldü. Fokker 100 tipi uçağın sağ motorundaki arızalı bir itme geri döndürücüsünün komutları almaması sonucu düştüğü belirlendi.
  • 10 Şubat 2004'te Kish Air Flight 7170 uçuşu Sharjah Uluslararası Havalimanı'na yaklaşırken düştü. Uçaktaki 46 yolcu ve mürettebattan toplam 43'ü öldü. Müfettişler Fokker 50 tipi uçağın pilotlarının zamanından önce pervaneleri ters itme moduna döndürdüklerini ve uçağın kontrolünü kaybetmelerine neden olduklarını belirledi.
  • 17 Temmuz 2007'de TAM Linhas Aéreas Flight 3054, São Paulo, Brezilya'daki Congonhas-São Paulo Uluslararası Havaalanı'na iniş yaptıktan sonra bir Shell benzin istasyonuna, arabalara ve son olarak da TAM Express binasına çarptı. Airbus A320 tipi uçaktaki 187 kişi ve yerde 12 kişi olmak üzere toplam 199 kişi öldü. Kaza, sağ motorun itme geri çeviricisindeki bir arızaya bağlandı.

Ayrıca bakınız

Kaynakça

  1. ^ a b c d Federal Aviation Administration (1 Eylül 2011). Airplane Flying Handbook:Faa-h-8083-3a. Skyhorse Publishing Inc. ss. 635-638. ISBN 978-1-61608-338-0. Erişim tarihi: 9 Temmuz 2013. 
  2. ^ a b Phil Croucher (1 Mart 2004). JAR Professional Pilot Studies. Lulu.com. ss. 3-23. ISBN 978-0-9681928-2-5. Erişim tarihi: 11 Temmuz 2013. 
  3. ^ a b Claire Soares (1 Nisan 2011). Gas Turbines: A Handbook of Air, Land and Sea Applications. Butterworth-Heinemann. ss. 315-319, 359. ISBN 978-0-08-055584-3. 29 Mart 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 11 Temmuz 2013. 
  4. ^ a b c d e "Thrust Reversing". Purdue AAE Propulsion. 13 Mart 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 10 Temmuz 2013. 
  5. ^ a b c Bernie MacIsaac; Roy Langton (6 Eylül 2011). Gas Turbine Propulsion Systems. John Wiley & Sons. ss. 152-155. ISBN 978-0-470-06563-1. 31 Aralık 2013 tarihinde kaynağından arşivlendi. Erişim tarihi: 11 Temmuz 2013. 
  6. ^ "P-750 XSTOL Specifications". Pacific Aerospace. 1 Şubat 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 9 Eylül 2013. 
  7. ^ "Boeing's Jet Stratoliner." Popular Science, July 1954, p. 24.
  8. ^ a b Scott C. Asbury; Jeffrey A. Yetter (2000). Static Performance of Six Innovative Thrust Reverser Concepts for Subsonic Transport Applications: Summary of the NASA Langley Innovative Thrust Reverser Test Program. Diane Publishing. ss. 1-2. ISBN 978-1-4289-9643-4. Erişim tarihi: 10 Temmuz 2013. 
  9. ^ "Safe Winter Operations". Boeing Corp. 24 Temmuz 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 1 Şubat 2020. 
  10. ^ "Arşivlenmiş kopya" (PDF). 1 Şubat 2020 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 1 Şubat 2020. 
  11. ^ "What It's Like To Fly America's Biggest Jet, The Gargantuan C-5 Galaxy". jalopnik.com. 1 Şubat 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 3 Nisan 2018. 
  12. ^ "Accident Database: Accident Synopsis 02091982". airdisaster.com. 30 Mart 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 3 Nisan 2018. 
  13. ^ Stokes, Henry Scott. "Cockpit Fight Reported on Jet That Crashed in Tokyo 2 Mayıs 2008 tarihinde Wayback Machine sitesinde arşivlendi.," The New York Times. 14 February 1982. Retrieved on 10 November 2011.
  14. ^ "Troubled Pilot". Time. 1 Mart 1982. 2 Mayıs 2008 tarihinde kaynağından arşivlendi. Erişim tarihi: 10 Kasım 2011. 
  15. ^ "26 May 1991 – Lauda 004". Tailstrike.com: Cockpit Voice Recorder Database. 23 Eylül 2004. 29 Temmuz 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 14 Aralık 2006. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Airbus A380</span> Dünyanın en büyük yolcu uçağı

Airbus A380, Airbus tarafından üretilen, dünyanın en büyük geniş gövdeli yolcu uçağıdır. Ağırlığı 560 ton'dur.

<span class="mw-page-title-main">Uçak</span> Motorlu hava taşıtı

Uçak veya tayyare; hava akımının başta kanatlar olmak üzere kanat profilli parçaların alt ve üst yüzeyleri arasında basınç farkı oluşturması sayesinde havada tutunarak yükselebilen, uçma özellikli motorlu bir hava gemisi ve hava taşıtıdır. Pistonlu ya da jet motorlu, sabit kanatlı ve havadan ağır pek çok hava taşıtı uçak kategorisine dahildir. Günümüzde en temel uçak tipleri, yolcu uçağı, savaş uçağı, kargo uçağı olarak bilinirken, farklı coğrafi şartlara göre özelleştirmiş uçaklar da mevcuttur.

<span class="mw-page-title-main">İçten yanmalı motor</span> yakıtın yanma odasında oksitleyici ile yandığı motor

İçten yanmalı motorlar, yakıt'ın motor içinde yanma odası adı verilen sınırlı bir alan içinde yakılması ile oluşan basıncın, piston denen parçayı hareket ettirmesi ile oluşan makinelerdir.

<span class="mw-page-title-main">Helikopter</span>

Helikopter, dikey kalkış ve iniş yapabilen döner kanatlı bir hava taşıtıdır. İsmin kökü Yunancada heliko pteron yani hareketli kanatlar anlamından gelir. Fransız Gustave Ponton d'Amécourt tarafından 1861'de ortaya atılmıştır. 1907 yılında Fransız Paul Cornu ilk motorlu helikopteri uçurmuştur.

<span class="mw-page-title-main">Roket</span> itiş için kullanılan pirokinetik motor; yanıcı silah için bkz. Q2037215

Roket bir uzay aracı, hava aracı, araç, atkı veya bombadır. Roket, roket motorundan itme gücü elde eder. Roket motoru egzozu tamamen roket içinde taşınan roket itici yakıtından oluşur. Roket motorları etki ve tepki ile çalışır ve sadece egzozlarını yüksek hızda ters yönde dışarı atarak roketleri ileri doğru iter ve bu nedenle uzay boşluğunda çalışabilir. Etimolojik kökeni İtalyancada "bobin" anlamına gelen rocchetto olup, silindirik şekil benzerliğinden ötürü modern anlamında sahiplenilen kelimenin kullanımı 20. yüzyıl başlarında savaş gemilerinin öz itmeli ateşleme mermilerine dayanmaktadır. Türk Dil Kurumuna göre Türkçeye Fransızca roquette kelimesinden geçmiştir.

<span class="mw-page-title-main">Turbofan</span> jet motor türü

Turbofan, itişi egzoz gazıyla beraber, ön kısımdaki geniş fanla da sağlanan güvenilir ve bakımı kolay jet motoru tipidir. Ön kısmı büyük, arka kısmı koni şeklinde ve daha küçüktür. Genelde yolcu uçaklarında kullanılır.

<span class="mw-page-title-main">Rule</span> Hava aracının kendi gücüyle yerde hareketi

Rule veya taksi; bir hava taşıtının kendi gücünü kullanarak yerdeki yolculuğu. Bu hareket genellikle tekerlekleri üzerinde olabileceği gibi bazı hava taşıtları için kızakları ya da dubaları üzerinde olabilir.

<span class="mw-page-title-main">Boeing 737</span> Yolcu Uçağı

Boeing 737 kısa ve orta mesafe menzilli, tek koridorlu, dar gövdeli ve düşük fiyatlı, jet motorlu havayolu uçağıdır. Boeing'in diğer modelleri 707 ve 727'den türetilerek tasarlanmış olan Boeing 737'nin toplam dokuz versiyonu üretilmiştir. Boeing 737 Max üretiminin başlamasından sonra Boeing 737NG olarak adlandırılan -600,700,800 ve 900 versiyonunun üretimi 18 Aralık 2019 tarihinde son 737NG'nin KLM Havayollarına teslim edilmesiyle sonlanmıştır.

<span class="mw-page-title-main">Airbus A320 ailesi</span>

Airbus A320 ailesi Almanya, Fransa, İspanya, Birleşik Krallık ve Hollanda ortaklığından oluşan Airbus S.A.S. ailesinin kısa ve orta menzilli uçağıdır. Airbus A320 serisi A318, A319, A320, A321 ve ACJ özel jet versiyonlarından oluşur. İlk uçuşunu 1987 yılında gerçekleştiren A320 serisi fly by wire Flight control sistemini kullanan ilk yolcu uçaklarıdır. Yolcu uçakları arasında bu güne kadar 4658 adetten fazla üretilerek en büyük rakibi Boeing 737'in arkasından ikinci sıradadır. 1965 yılında üretime başlayan Boeing 737 şu ana kadar 8000'i geçmiştir.

<span class="mw-page-title-main">Boeing 777</span> yolcu uçağı

Boeing 777 Uzun menzilli, geniş gövdeli, Çift koridorlu, çift motorlu yolcu uçağı. Boeing Ticari Uçaklar tarafından üretilmektedir. Dünyanın en büyük ve yaygın büyük çap turbofan motorlu, üç sınıfta 283 ve 368 arasında tek sınıf yapılandırmasında 550 yolcu taşıma olanağına sahip, 5235 ila 9380 deniz mili 'ye kadar menzili vardır. 777'ye dışarıdan bakıldığında diğer uçaklardan ayırt edici özellikleri, yuvarlak gövde kesiti, bıçak-kuyruk konisi, altı tekerlekli ana iniş takımı. Boeing 777'in ilk telesiyejli filosiyeline göre, bilgisayar aracılı kontrolleri var. Ayrıca, tamamen bilgisayar destekli tasarımla tasarlanan ilk ticari uçak.

Sürtünmeye dayalı fren sistemleri kullanıma bağlı olarak etkilerini kaybetme eğilimi gösterirler. Sürekli veya ağır şartlar altında kullanılan fren sistemi ısınarak etkisiz hale gelirler. Bunun önüne geçebilmek için daha güvenli olan hız kesiciler geliştirilmiştir.

<span class="mw-page-title-main">Gaz türbini</span> içten yanmalı motor tipi

Gaz türbini, bir tür sürekli ve içten yanmalı motordur. Bütün gaz türbinlerinde ortak bulunan ana bileşenler aşağıdaki gibidir:

Turbo lag, Turbo lag turbonun belli bir basınç oluşturduktan sonra; gaz pedalının bırakılması ile, emme manifoldundaki gaz kelebeği kapanır. Bu durumda turbodan motora kadar olan düzenekte yüksek bir basınç oluşur. Bu yüksek basınç yüksek hızla dönmekte olan turbo pervanesi aşırı ters basınçtan durur. Tekrar gaz pedalına basıldığında bu ters basıncın motor tarafından emilerek turbo pervanesinin yeniden dönmeye başlaması ve ihtiyaç duyulan basıncı tekrar sağlayabilmesi için geçen zamana "TURBO LAG" ya da "TURBO GECİKMESİ" denir. Bu durum aynı zamanda turbo pervanesi için de zararlı bir durumdur. Turbo gecikmesini önlemek için birçok standart motorda ters basıncı boşaltan düzenekler olmakla birlikte, daha çok yüksek güçlü motorlarda -proffesional modifiyede kullanılan- BLOW-OFF adıyla anılan parça kullanılmaktadır. BLOW-OFF, Turbo ile gaz kelebeği arasındaki bir yere konumlandırılır. Emme manifoldunda gaz kelebeğinden sonra alınan bir hortum vasıtası ile, gaz kelebeği kapandığında motorda oluşan vakumdan faydalanılarak bir valfin açılması sağlanır ve açılan valfden turbo üzerinde oluşan ters basınç boşaltılır. Turbo üzerinde oluşan basıncın boşaltılması ile turbo pervanesinin aniden durması önlenmiş olur. Dönmeye devam eden turbo pervanesi tekrar gaz pedalına basıldığında daha kısa sürede basınç oluşturur.

<span class="mw-page-title-main">Jet motoru</span> fosil yakıtlı motor türü

Jet motoru veya diğer adıyla tepkili motor, atmosferden aldığı havayı sıkıştırıp jet yakıtıyla yakarak ısıtan havacılık motoru. Bu ısıtma sonucunda ortaya çıkan gazları, hızla dışarı püskürterek, ters yönde bir itiş gücü oluşturur ve bu güçle, motorun bağlı olduğu aracın hareket etmesi sağlanır. Bu motorlar, Newton'ın hareket yasalarına bağlı olarak geliştirilmiştir. Bu yasaya göre; her etki eşit büyüklükte ve ters yönde bir tepki doğurur.

<span class="mw-page-title-main">Roket motoru</span>

Roket motoru, genellikle yüksek sıcaklıktaki gaz olan yüksek hızlı itici bir sıvı jeti oluşturmak için tepkime kütlesi olarak depolanmış roket itici gazlarını kullanır. Roket motorları, Newton'un üçüncü yasasına göre kütleyi geriye doğru fırlatarak itme üreten tepki motorlarıdır. Çoğu roket motoru, gerekli enerjiyi sağlamak için reaktif kimyasalların yanmasını kullanır, ancak soğuk gaz iticileri ve nükleer termal roketler gibi yanmayan biçimleri de mevcuttur. Roket motorları tarafından tahrik edilen araçlara genellikle roket denir. Roket araçları, çoğu yanmalı motorun aksine kendi yükseltgen taşır, bu nedenle roket motorları, uzay aracını ve balistik füzeleri itmek için bir boşlukta kullanılabilir.

<span class="mw-page-title-main">Döner kanatlı hava aracı</span> döner kanatlı hava aracı 🚁

Dönerkanat ya da dönerkanatlı uçaklar, dikey bir şafta bağlı olarak dönen pallerin (kanatların) ürettiği kaldırma kuvvetiyle yerçekimini yenen ve uçuşunu gerçekleştiren hava araçlarıdır. Tek bir şafta bağlı pallerden oluşan sistem de rotor olarak adlandırılır. Uluslararası Sivil Havacılık Örgütü tarafından yapılan dönerkanat tanımı, "uçuş için bir ya da birden fazla rotor tarafından desteklenen hava aracı" şeklindedir. Dönerkanat dendiğinde akla gelen hava araçları genellikle helikopter, cyclocopter, autogyro ve gyrodynedır. Bazı melez (hibrit) dönerkanatlı hava araçları ise motorlarıyla tahrik ettikleri ana rotorlarına ek olarak, fazladan itki sağlayan ek motorlar, pervaneler ve sabit taşıma yüzeylerine de sahip olabilirler.

<span class="mw-page-title-main">Hava freni (havacılık)</span>

Hava freni veya hız frenleri, havacılıkta iniş sırasında sürüklenmeyi artırmak veya yaklaşma açısını artırmak için kullanılan bir tür uçuş kontrol yüzeyidir. Hava frenleri spoilerden farklıdır, çünkü hava frenleri kaldırmada çok az değişiklik yaparken sürüklenmeyi artırmak için tasarlanmıştır, spoiler ise kaldırma-sürükleme oranını düşürür ve kaldırma kuvvetini korumak için daha yüksek bir hücum açısı gerektirir, bu da daha yüksek perdövites hızına neden olur.

<span class="mw-page-title-main">Pratt & Whitney JT8D</span>

Pratt & Whitney JT8D, Pratt & Whitney tarafından Şubat 1963'te Boeing 727'nin ilk uçuşu ile tanıtılan düşük baypaslı bir turbofan motorudur. ABD Donanması A-6 Intruder saldırı uçağına güç veren Pratt & Whitney J52 turbojet motorunun bir modifikasyonuydu. Volvo RM8, Saab 37 Viggen avcı uçağı için İsveç'te lisanslı olarak üretilmiş bir son yakma sürümüdür. Pratt & Whitney ayrıca FT8 olarak elektrik santrali ve gemi tahrik sistemi için statik versiyonlar satıyor.

<span class="mw-page-title-main">Paramotor</span>

Paramotor, motorlu bir yamaç paraşütünün ("PPG") koşum takımı ve itici kısmının genel adıdır. İki temel tip paramotor vardır: ayakla fırlatma ve tekerlek fırlatma.

<span class="mw-page-title-main">Motor kontrol ünitesi</span>

Motor kontrol ünitesi ya da sıkça kullanılan diğer adıyla motor kontrol modülü , optimum motor performansını sağlamak için içten yanmalı bir motordaki bir dizi aktüatörü kontrol eden bir tür elektronik kontrol ünitesidir. Temel amacı motor fonksiyonlarını yönetmek, performansı iyileştirmek ve sürekli kontrol altında tutmaktır. Bu görevini yerine getirmek için motor bölmesi içindeki çok sayıda sensörden gelen değerleri okur, bu değerleri çok boyutlu performans haritalarını kullanarak yorumlar ve buna göre de motordaki bileşenlerde gerekli ayarlamaları yapar. ECU'lar araçlarda kullanılmaya başlamadan önce hava-yakıt karışımı, ateşleme zamanlaması ve rölanti devri gibi parametreler mekanik olarak ayarlanıyor; mekanik ve pnömatik elemanlar gibi çeşitli kontrolörler vasıtasıyla da dinamik olarak kontrol ediliyordu.