İçeriğe atla

Termoremanent manyetizasyon

Magmatik kayaçlar soğuduğu zaman, Dünya'nın manyetik alanından bir thrmoremanent maneyetizasyon (TRM) kazanmıştır. Termoremanent maneyetizasyon (izotermal mıknatıslanmaya bakınız), oda sıcaklığında aynı alana maruz kalırsa, manytetizasyon çok daha büyük olabilir. Bu mıknatıslanma aynı zamanda milyonlarca yıldır önemli bir değişiklik olmadan kalıcı ve çok kararlı olabilir. Termoremanent maneyetizasyon paleomaneyetistlerin, Dünya'nın antik manyetik alanın büyüklüğünü ve yönünü anlamayı mümkün kılan ana nedenidir.[1]

Tarihi

Erken onbirinci yüzyıl kadar erken zamanlarda, Çinliler demirin, bir parça ısıtılarak mıknatıslanabilir olduğunun farkındaydı ve daha sonra suyun içinde söndürüldü zaman demirin kırmızı ve sıcak olduğunu biliyordu. Dünya'nın alanında  istenilen polariteyi almak için söndürme kısmına odaklanıldı. 1600 yılında William Gilbert, De Magnete adında, manyetizma hakkında titiz bir dizi deneyler bulunduğu bir rapor yayınladı. Onun çalışmasında da, Dünya'nın manyetik alanının, bir çelik çubuğun suda soğutulmasıyla açıklandığından, William Gilbert, Çinlilerin yaptığı bu işin farkında olmuş olabilir.[2]

20. yüzyılın başlarında, birkaç araştırmacılar magmatik kayaçların, ısıtma olmadan Dünya'nın manyetik alanında edindiği mıknatıslanmanın, çok daha yoğun bir mıknatısanmaya sahip olduğunu gördükten sonra; ve Dünya'nın saha geçmişteki yönünün tersine hareket ettiğini düşünmüşlerdir.[3]

İdeal termoremanent manyetizasyon davranışı

Thellier yasaları

İdeal TRM her iki yönünü ve yoğunluğunu laboratuvarda süreçler sonucu, ölçülebilir bir şekilde manyetik alana kayıt edilir. Thellier[4] gösterdiği bu mümkünse eğer, pTRM'i tatmin dört kanun yazmıştır. Varsayalım ki A ve B iki örtüşmeyen sıcaklık aralıkları olsun. Eğer ki bu bir pTRM elde ederek soğutma örneği için gereken oda sıcaklığı, sadece geçiş alanı üzerinde iken sıcaklık aralığı A'dır.; benzer bir tanımdır. Bu Thellier yasaları ise şunlardırː

  • Doğrusal: ve 'a her zaman doğru orantılıdır, eğer ki  Dünya'nın manyetik alanından çok büyük değilse.
  • Karşılıklılık: 'nın kaldırılması için  sıcaklığına ısıtılmak gerekir ve 'nin kaldırılması için de  sıcaklığı gerekir.
  • Bağımsızlık: ve  birbirinden bağımsızdır.
  • Eklenebilirlik Eğer Her iki sıcaklık aralıklarında alan üzerinde çevirerek elde edilir ise, .

Bu yasalar herhangi örtüşmeyen sıcaklık aralıkları A ve B için basılı tutarsanız, örnek Thellier yasalarını karşılar..[5]

Ayrıca bakınız

Notlar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

<span class="mw-page-title-main">Manyetik alan</span> elektrik yüklerinin bağıl hareketteki manyetik etkisini tanımlayan vektör alanı

Mıknatıssal veya manyetik alan, bir mıknatısın mıknatıssal özelliklerini gösterebildiği alandır. Mıknatısın çevresinde oluşan çizgilere de, mıknatısın o bölgede oluşturduğu manyetik alan çizgileri denir. Manyetik alan çizgilerinin yönü kuzeyden (N) güneye (S) doğrudur. Manyetik alan hareket eden elektrik yükleri tarafından, zamanla değişen elektrik alanlardan veya temel parçacıklar tarafından içsel olarak üretilir. Manyetik alan vektörel bir büyüklüktür. Yani herhangi bir noktada yönü ve şiddeti ile tanımlanır. Manyetik alan B harfiyle temsil edilir. SI birimi Sırp bilim insanı Nikola Tesla'nın soyadı Tesladır. Manyetik alan Lorentz kuvveti kullanılarak ölçüldüğü için birimi coulumb-metre/saniye başına Newtondur. Saniye başına coulomba bir amper dendiği için T=N(Am)-1 olarak da geçer. Tesla günlük olaylar için çok büyük bir birim olduğundan pratikte, gauss (G) kullanılmaktadır. 1 T=104 G

<span class="mw-page-title-main">Mıknatıs</span> manyetik alan üreten nesne veya malzeme

Mıknatıs ya da demirkapan, manyetik alan üreten nesne veya malzemedir. Demir, nikel, kobalt gibi bazı metalleri çeker, bakır ve alüminyum gibi bazı metallere ve metal olmayan malzemelere etki etmez.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Manyetizma</span> class of physical phenomena

Manyetizma, manyetik alan tarafından oluşturulan fiziksel bir olgudur. Elektrik akımı ya da temel bir parçacık herhangi bir manyetik alan yaratabilir. Bu manyetik alan aynı zamanda diğer akımları ve manyetik momentleri de etkiler. Manyetik alan her maddeyi belli bir ölçüde etkiler. Kalıcı mıknatıslar üzerindeki etkisi en çok bilinen bir durumdur. Kalıcı mıknatıslar ferromanyetizmadan dolayı kalıcı manyetik momente sahiptir. Ferromanyetizma kelimesinde yer alan “ferro” ön eki demir elementinin isminden türetilmiştir. Çünkü kalıcı mıknatıs ilk olarak “manyetit – Fe3O4” adı verilen demir elementinin doğal bir formu olarak gözlemlenmiştir. Çoğu madde kalıcı momente sahip değildir. Bazıları manyetik alan tarafından çekilirken (paramanyetizm); bazıları manyetik alan tarafından itilir (diyamanyetizm). Bazıları ise herhangi bir manyetik alana maruz kaldığında daha karmaşık durumlara sevk olur. Manyetik alan tarafından ihmal edilecek ölçüde etkilenen maddeler ise manyetik olmayan maddeler olarak bilinir. Bunlar bakır, alüminyum, gazlar ve plastiktir. Ayrıca, saf oksijen sıvı hale kadar soğutulduğunda manyetik özellikler gösterir.

<span class="mw-page-title-main">Mıknatıslanma</span>

Mıknatıslanma ya da mıknatıslanma vektörü bir maddenin manyetik durumunu belirten niceliktir. Bu vektörün büyüklüğü, maddenin birim hacminin net manyetik momentine eşittir. Mıknatıslanmanın ve madde içindeki manyetizmanın kaynağı elektronların yörüngedeki hareketleridir. Mıknatıslanma vektörü M harfi ile gösterilir.

<span class="mw-page-title-main">Ampère kanunu</span>

Klasik elektromanyetizmada Ampère yasası kapalı bir eğri üzerinden integrali alınmış manyetik alanla o eğri üzerindeki elektrik akımı arasındaki ilişkiyi açıklayan yasadır. James Clerk Maxwell yasayı hidrodinamik olarak 1861 tarihli Fizikte kuvvet çizgileri üzerine makalesinde tekrar kanıtlar. Yasanın matematiksel ifadesi şu anda klasik elektromanyetizmayı oluşturan dört temel Maxwell denkleminden biridir.

<span class="mw-page-title-main">Magmatik kayaçlar</span> Magmanın yeryüzüne çıkarken soğumasıyla meydana gelen kayaçlardır.

Magmatik kayaçlar, magmanın yükselerek yer kabuğunun içerisine girip veya yeryüzüne ulaşıp soğuyarak katılaşması sonucu oluşan kayaç türüdür. Üç ana kaya türünden biridir, diğerleri tortul ve metamorfiktir. Magmatik kaya magma veya lavın soğutulması ve katılaşmasıyla oluşur. Magmatik kayaçlar çok çeşitli jeolojik ortamlarda meydana gelir: kalkanlar, platformlar, orojenler, havzalar, büyük magmatik bölgeler, genişletilmiş kabuk ve okyanus kabuğu. (Resim1) Magmatik kayaçlar temel olarak silikat minerallerinden oluşmuşlardır. Magmanın bileşimi temel bazı elementlerin dağılımını yansıtsa da oranları değişmekte ve bu da belli başlı magma tiplerinin oluşmasına neden olur.

<span class="mw-page-title-main">Elektromanyetik alan</span>

Elektromanyetik alan, Elektrik alanı'ndan ve Manyetik alan'dan meydana gelir.

Φ harfiyle gösterilen Manyetik akı, toplam manyetizmanın ölçüsüdür ve bu yönüyle elektrik yükün manyetik karşılığıdır. Manyetik akı yoğunluğu ise B harfiyle gösterilir ve birim kesit alandan geçen manyetik akı miktarının ölçüsüdür.

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

Paleomanyetizma, kayaçların eski manyetik alanını inceleyen bilim dalı. Mineraller bulundukları kayaçlara ait manyetik alanın yönünü ve yoğunluğunu kaydederler. Bu kayıtlar tektonik plakaların geçmişteki lokasyonu ve yeryüzünün manyetik alanının geçmişteki durumu hakkında bilgi verir.

Ferromanyetik rezonans veya FMR, ferromıknatıs malzemeleri incelemek için kullanılan bir spektroskopi yöntemidir. Spin dalgaları ve spin dinamikleri inceleyen için standart bir araçtır. FMR, elektron paramanyetik rezonansa (EPR) çok benzediği gibi, ayrıca nükleer manyetik rezonansa (NMR) da biraz benzer. Tek farkı FMR, dipolar bağlı fakat eşsiz olan elektronların manyetik momentteki mıknatıslanma sonucunu incelerken; NMR ise, atomik veya moleküler orbitallerin etrafında, sıfır olmayan nükleer spin çekirdeği gibi dolaşan atomik çekirdeğin manyetik momentini inceler.

<span class="mw-page-title-main">Eddy akımı</span>

Eddy akımı Faraday’ın indüksiyon kanunundan dolayı, manyetik alan değiştiğinde iletkenlerin içerisinde oluşan çembersel elektrik akımıdır. Eddy akımı kapalı bir döngünün içerisinde, manyetik alana dik düzlemlerde akar. Sabit bir iletkenin içerisinde; AC elektromıknatıs veya trafo kullanılarak oluşturulmuş, zamana bağlı değişen bir manyetik alan ile veya sabit bir mıknatısa göre hareketli bir iletken ile oluşturulabilirler. Belirli bir çerçeve içerisinde oluşan akımın büyüklüğü; manyetik alanın büyüklüğü, çerçevenin alanı, çerçevenin içerisinde oluşmuş manyetik akının anlık değişim miktarı ile doğru, üzerinde aktığı maddenin iç direnciyle ters orantılıdır.

Paramanyetik bir malzemede, malzemenin mıknatıslanması genel olarak uygulanan manyetik alanla orantılıdır. Fakat eğer malzeme ısıtılırsa, bu oran düşer: Belirli bir sıcaklığa kadar, mıknatıslanma sıcaklıkla ters orantılıdır. Bu kavram “Curie Yasası” tarafından kapsanmaktadır:

<span class="mw-page-title-main">Magnetostatik</span>

Magnetostatik, Akımın sabit olduğu sistemlerdeki Manyetik alanlar üzerine çalışan bir alandır. Yüklerin sabit olduğu Elektrostatikin bir manyetik analoğudur. Mıknatıslanma, statik olmak zorunda değildir. Magnetostatik eşitlikleri, nanosaniyede ya da daha kısa sürede manyetik cereyanları tahmin etmek için kullanılabilir. Magnetostatik, akımlar sabit olmadığında bile yeterince iyi bir yaklaşımdır. Akımların sürekli değişmemesi gerekir. Magnetostatik, mikro manyetiğin çok kullanılan bir uygulamasıdır. Manyetik kayıt cihazları gibi.

<span class="mw-page-title-main">Manyetik histeresis</span>

Demir gibi ferromanyetik bir madde, harici bir manyetik alan içerisine girdiğinde o maddeyi oluşturan atomlar, kutupları aynı yöne bakacak şekilde dizilirler. Bu da maddenin mıknatıs özelliği göstermesini sebep olur. Manyetik alan ortadan kaldırılsa dahi atomların bir kısmının hizası bozulmaz ve madde mıknatıslık özelliği sergilemeye devam eder. Bu mıknatıslanma, bazı element ve alaşımlar için kalıcı olabilir; bazılarında ise manyetik alan etkisinden çıktıktan sonra zaman içerisinde mıknatıslık etkisi kaybolur. Manyetik alan etkisi altında kalıcı olarak mıknatıslanan maddeler, Curie sıcaklığına kadar ısıtılarak ya da ilk duruma ters yönde bir manyetik alan oluşturularak eski haline döndürülebilirler. Harddiskler gibi manyetik kayıt ortamları, bu prensibe göre çalışmaktadır.

Elektromanyetizmada geçirgenlik, bir maddenin kendi içinde manyetik alan oluşabilmesini destekleyen bir ölçüdür. Bu yüzden, bir malzemenin mıknatıslanma derecesi, uygulanan manyetik alana olan cevabıdır. Manyetik geçirgenlik tipik olarak Yunan harfi µ ile gösterilir. Bu terim 1885 yılında Oliver Heaviside tarafından icat edildi. Manyetik geçirgenliğin tersi manyetik dirençtir.

Doğal kalıcı mıknatıslanma (NRM), bir kayaç ya da sedimanda kalıcı manyetizma oluşması durumudur. Bazı formlarında, Dünya'nın manyetik alanının rekorunu ve kaya tektonik hareketleriini milyonlarca yıl boyunca koruyabilecek kadar niteliklidir. Doğal kalıcı mıknatıslanma Paleomanyetizmayanın ve manyetotostratigrafinin temelini oluşturur.

Oersted, CGS birim sisteminde kullanılan bir birimdir. Birim adını elektrik akımındaki değişimin manyetik alan ürettiğini bulan Danimarkalı bilim insanı Hans Christian Ørsted'ten almıştır.