İçeriğe atla

Tensör hesabı

Matematikte, tensör hesabı veya tensör analizi, vektör hesabının tensör alanları için uzantısıdır.

Gregorio Ricci-Curbastro ve onun öğrencisi Tullio Levi-Civita tarafından geliştirildi. Albert Einstein tarafından genel görelilik teorisinin geliştirilmesi için kullanıldı.[] Tensörler bir manifold (örneğin uzay-zaman) üzerinde değişimi gösterebilir.[]

Tensör hesabının fizik ve mühendislik içinde stres analizi, süreklilik mekaniği, elektromanyetizma dahil güncel-hayatta birçok uygulamaları vardır.

Ayrıca bakınız

  • Vektör analizi
  • Matris hesabı
  • Ricci hesabı
  • Eğrisel koordinatlar içinde tensörler
  • Çokludoğrusal altuzay öğrenimi

Bibliyografya

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Lineer cebir</span> Uzay matematiği

Doğrusal cebir ya da lineer cebir; matematiğin, vektörler (yöney), vektör uzayları, doğrusal dönüşümler, doğrusal denklem takımları ve matrisleri (dizey) inceleyen alanıdır. Vektör uzayları, modern matematiğin merkezinde yer alan bir konudur. Bundan dolayı doğrusal cebir hem soyut cebirde hem de fonksiyonel analizde sıkça kullanılır. Doğrusal cebir, analitik geometri ile de alakalı olup sosyal bilimlerde ve fen bilimlerinde yaygın bir uygulama alanına sahiptir.

<span class="mw-page-title-main">Diferansiyel geometri</span>

Diferansiyel geometri türevin tanımlı olduğu Riemann manifoldlarının özellikleriyle uğraşan matematiğin bir alt disiplinidir. Başka bir deyişle, bu manifoldlar üzerindeki metrik kavramlarla uğraşır. Eğrilik, eğriler için burulma ve yüzeyler için değişik eğrilikler, araştırılan özellikler arasındadır.

<span class="mw-page-title-main">Alan (fizik)</span>

Alan, fizik kuramlarında kullanılan, matematikteki cebirsel alanın tüm özelliklerini taşıyan terim. Genellikle bu etki 100 nanometre ve daha küçük skalalarda etkili olur. Bu etki nanoteknolojiyle aynı ölçeğe denk gelir. Bir alan mekan ve zaman içinde her bir nokta için bir değeri olan bir fiziksel miktardır. Örneğin, hava durumu, rüzgâr hızı uzayda her nokta için bir vektör atayarak tarif edilmektedir. Her bir vektör bu noktada hava hareketinin hızını ve yönünü temsil eder.

<span class="mw-page-title-main">Eğrilik</span>

Geometri'de iki çeşit eğrilik tanımlanır. Eğrilik ve özeğrilik. Tarihte ilk olarak 2-boyutlu ve 3-boyutlu uzayda parametrik eğrilerin eğriliği incelendi. Daha sonraki aşamada 2-boyutlu ve 3-boyutlu yüzeylerin eğriliği incelendi ve ortalama eğrilik, Gaussian eğrilik gibi kavramlar ortaya çıktı.

<span class="mw-page-title-main">Vektör hesabı</span>

Vektör hesabı, iki veya daha çok boyutlu iç çarpım uzayındaki vektörlerin çok değişkenli gerçel analiziyle uğraşan bir matematik dalıdır. Fizik ve mühendislikte epey faydalı olan formül takımlarından ve problem çözme tekniklerini kapsamaktadır. Vektör hesabı köklerini kuaterniyon analizinden almaktadır ve Amerikan mühendis ve bilim insanı J. Willard Gibbs ve İngiliz mühendis Oliver Heaviside tarafından formüle edilmiştir.

Matematiğin vektör uzaylarıyla ve bu uzayların üzerinde tanımlı operatörlerle uğraşan bir alt dalı. Kökleri fonksiyon uzayları kuramının geliştirilmesine; hatta diferansiyel ve integral denklemlerinin çalışılmasına kadar gitmektedir. Özelde mesela Fourier dönüşümü gibi fonksiyon dönüşümlerinin çalışılmasında da kullanılmıştır. Fonksiyonel kelimesinin ilk kullanımı varyasyonlar hesabına kadar takip edilebilir. Ancak, genel anlamda kullanımı İtalyan matematikçi ve fizikçi Vito Volterra'ya atfedilmektedir. Yine de temeli büyük ölçüde Stefan Banach ve çevresindeki Polonyalı matematikçiler tarafından atılmış ve geliştirilmiştir. Çağdaş anlamda, fonksiyonel analiz bir topolojiye sahip vektör uzaylarının çalışılmasında, özellikle sonsuz boyutlu uzaylarda, gözükmektedir. Tanımdan yola çıkılarak fonksiyon analizinin sonlu boyutlu uzaylar kuramını da içerdiği düşünülebilir; ancak bu uzayları bir topolojisi olmadan inceleyen alan doğrusal cebirdir. Fonksiyonel analizin önemli bir işlevlerinden biri de ölçü, integral ve olasılık kuramı gibi genel kuramları sonsuz boyutlu uzaylara yaymaktır ki bu işlevin özelde adı sonsuz boyutlu analizdir.

<span class="mw-page-title-main">Hilbert uzayı</span>

Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.

<span class="mw-page-title-main">Tensör</span> skaler, vektör, covector ve tensörlerin bazı kombinasyonlarında çok çizgili harita

Matematikte, tensör, çok boyutlu verinin simgelenebildiği geometrik bir nesnedir. Skaler denilen yönsüz nicel büyüklükler, vektör denilen yönlü büyüklükler ve matris denilen iki boyutlu nesneler birer tensördür. Tensör, tüm bu nesnelerin genelleştirilmiş halidir ve çok boyutlu veri kümeleri için kullanılır. Nesnenin kaç boyutla ifade edildiğine de tensörün derecesi denilir. Bir skalerin derecesi sıfır, bir vektörün bir, bir matrisin ise ikidir. Tensörler üç ve üzeri dereceye sahip olabilir.

Bu diferansiyel geometri konuların bir listesidir. Ve aynı zamanda Lie grubu konularının listesi metrik geometri ve diferansiyelin sözlüğü bkz.

<span class="mw-page-title-main">Stres-enerji tensörü</span>

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

<span class="mw-page-title-main">Sürekli ortamlar mekaniği</span>

Sürekli ortamlar mekaniği, ayrı parçacıklar yerine tam bir kütle olarak modellenen maddelerin mekanik davranışları ve kinematiğin analizi ile ilgilenen mekaniğin bir dalıdır. Fransız matematikçi Augustin-Louis Cauchy, 19. yüzyılda bu modelleri formüle dökmüştür, fakat bu alandaki araştırmalar günümüzde devam etmektedir. 

Differansiyal geometri içerisinde,. gerçek olmayan Riemannia çok katlılarını ifade etmek için kullanılan eğriliktir. Genel Görelikte içerisinde, Einstein Tensör’ünün ortaya çıkardığı Einstein’nın alan denklemlerinin kütleçekimi için tanımladığı uzay-zaman eğriliğini tutarlı bir şekilde enerji ile açıklamasıdır.

Vektör analizinde diverjans teoremi, diğer isimleriyle ıraksama teoremi, Gauss teoremi veya Ostrogradsky teoremi, bir vektör alanının diverjansının hacim integralinin vektörün bölgeyi sınırlayan toplam dışa doğru akıya eşit olduğunu belirtir.

<span class="mw-page-title-main">Gram–Schmidt işlemi</span>

Matematikte, özellikle doğrusal cebir ve sayısal analizde, Gram–Schmidt süreci bir dizi vektörleri bir iç çarpım uzayı içinde ortonormal etmek için kullanılan bir yöntemdir. İç çarpım uzayında olan vektörler, genellikle Öklid uzayında Rn donatılmış olan standart iç çarpım vektörlerdir. Gram–Schmidt süreci bir sonlu, doğrusal bağımsız kümeni, S = {v1, ..., vk}, kn, alıp ve R'in aynı k-boyutlu alt uzayında yayılan ortogonal kümeni, S′ = {u1, ..., uk}, üretmektedir. 

<span class="mw-page-title-main">Uzay (matematik)</span> matematiksel bir terim

Matematikte, bir uzay belirli bir matematiksel yapıya sahip bir kümedir.

<span class="mw-page-title-main">TensorFlow</span>

TensorFlow, makine öğrenimi için ücretsiz ve açık kaynaklı bir yazılım kütüphanesidir. Bir dizi görevde kullanılabilir, ancak derin sinir ağlarının eğitimi ve çıkarımına özel olarak odaklanmaktadır.

<span class="mw-page-title-main">Akı</span> fiziksel bir olay

Akı, bir yüzeyden veya maddeden geçerken ortaya çıkan herhangi bir etkiyi tanımlar. Akı, fizikte birçok uygulaması olan uygulamalı matematik ve vektör analizinde bir kavramdır. Taşıma fenomenleri için akı, bir maddenin veya özelliğin akışının büyüklüğünü ve yönünü açıklayan bir vektör miktarıdır. Vektör hesabında akı, bir vektör alanının dikey bileşeninin bir yüzey üzerindeki yüzey integrali olarak tanımlanan skaler bir niceliktir.

<span class="mw-page-title-main">Tullio Levi-Civita</span> İtalyan matematikçi ve fizikçi (1873–1941)

Tullio Levi-Civita, ForMemRS, İtalyanca telaffuz: [ˈtulljo ˈlɛːvi ˈtʃiːvita]; 29 Mart 1873 - 29 Aralık 1941), mutlak diferansiyel hesap üzerine çalışmaları ve görelilik teorisine uygulamaları ile ünlü, ancak diğer alanlarda da önemli katkılarda bulunan İtalyan bir matematikçidir. Tensör hesabının mucidi Gregorio Ricci-Curbastro'nun öğrencisi idi. Çalışmaları hem saf hem de uygulamalı matematik, gök mekaniği, analitik mekanik ve hidrodinamik konularında temel makaleler içeriyordu.

<span class="mw-page-title-main">Odak mekanizması</span> bir depremde sismik dalgalar üreten süreç

Odak mekanizması, bir depremin, sismik dalgaları oluşturan kaynak bölgedeki deformasyonu tanımlar. Fay ile ilgili bir olay söz konusu olduğunda, kayan fay düzleminin ve kayma vektörünün yönünü ifade eder ve fay düzlemi çözümü olarak da bilinir. Odak mekanizmaları, gözlemlenen sismik dalga biçimlerinin analiziyle tahmin edilen deprem için moment tensörünün çözümünden türetilmiştir. Odak mekanizması, "ilk hareketlerin" modelini, yani ilk gelen P dalgalarının kırılıp kırılmadığını gözlemleyerek elde edilebilir. Bu yöntem, dalga biçimleri dijital olarak kaydedilip analiz edilmeden önce kullanıldı ve bu yöntem, kolay moment tensör çözümü için çok küçük depremler için hala kullanılmaktadır. Odak mekanizmaları artık ağırlıklı olarak kaydedilen dalga biçimlerinin yarı otomatik analizi kullanılarak türetilmektedir.

Fizikte, özellikle çokludoğrusal cebir ve tensör analizinde, kovaryans ve kontravaryans belirli geometrik veya fiziksel varlıkların nicel tanımının temelin değişmesiyle nasıl değiştiğini açıklar. Modern matematiksel gösterimde bu roller bazen yer değiştirir.