İçeriğe atla

Tekrarlama sınaması

İstatistik bilim dalı içinde tekrarlama sınaması iki değer (0-1) alan veya iki değer alma şekline dönüştürülmüş bir kategorik değişken için örneklem veri serisinin ardı ardına bir rastgele sıralama ile gelip gelmediğini sınamak için kullanılan bir parametrik olmayan istatistik yöntemidir.

Veriler

Bu sınama icin, iki turlu veri kullanilabilir:

  • Eğer örneklem verisi iki değerli kategorik veri ise, hemen birbiri ile arka arkaya gelen örneklem veri değerleri veri geliş sırasıyla ikinci veriden itibaren incelenir ve +, - ve 0 dan oluşan bir gösterge veri serisi hazırlanır . Yani incelenen veri değeri bir önceki veriden çıkartılır ve bu işlemin işareti gösterge verisi olur; yani Xi-Xi-1 işareti Di işaret verisi olur.
  • Eğer örneklem verisi iki değerli değilse veri ise bu verilerden ya ortalama veya medyan değeri çıkartılır ve hemen birbirini takip eden arkaarkaya gelen fark veri değerleri incelenir. Birbirini takip eden ortalama veya medyandan farklar arasındaki fark bulma sonuçları ortaya çıkan sonucun işaretlerinden yani +, - ve 0 dan oluşan bir gösterge veri serisi hazırlanır . Eğer incelenen veri değerinden ya ortalama veya medyan çıkartılır ve bulunan fark değerleri için bir fark bir önceki farkdan çıkartılır ve bu işlemin işareti gösterge verisi olur; yani Xi-Xi-1=Fi bulunup Fi-Fi-1'in işareti Di için veri olur. Dikkat edilirse veriler çokluluğa değil sıralamalara ve sıralama içindeki farklara dayanır.

Yöntem

Bu sınamanın amacı örneklem verilerinin ardı ardına rastgele olarak ortaya çıkıp çıkmadıklarını incelemektir. Dikkat edilirse bu sınama anakütle çokluğu veya rastgeleliği hakkında değil, örneklem verileri ile ilgilidir. Daha matematiksel biçimli bir ifade ile sıfır hipotez örneklem verilerinin birbirini takip eden işaretli gösterge elemanlarinin birbirlerine karşılıklı olarak bağımsız olduğudur.

Sınama istatistiğini elde etmek için örneklem verisinden elde edilmiş olan gostergeler serisinde Di değişmesi için tekrarlamalar (en. runs) incelenir Eğer gösterge işaret degişikligi gösterirse bu bir tekrarlamadir; yani Di=- ve Di+1=+ ise bir pozitif artış tekrarı ve Di=+ Di+1=- ise negatif azalış tekrarı olur. Bunlar sayılır: Np toplam pozitif artış tekrarı ve Nn toplam negatif azalış tekrarı olur ve bu ikisinin toplamı (R=Np+Nn) ise toplam tekrarlama sayısı olur.

Örneğin: Bir D(i) serisi şöyle gösterilsin: "----+++---+++--++++++" . Burada Np=3; Nn=2 ve toplam tekrarlama sayısı R=3+2=5 olur.

Toplam tekrarlama sayısı R için örneklem dağılımının yaklaşık olarak normal olduğu bilinmektedir ve bu dağılımın parametreleri şöyle verilir:

  • Ortalama
  • Varyans

Sınamaya devam bu değerler için bir standart normal puan (z-değeri) hesaplamak ile devam edilir.

Eğer toplam artış tekrarı veya toplam azalış tekrarı 20'den azsa (yani veya ) anlamlılık düzeyi olan 0,05 için hazırlanmış özel bir tablo kullanılıp tablo z-değeri bulunur.[1] Eğer ve ise genel standart normal tablolarından 0,05 veya 0,01 için anlamlılık düzeyi tablo z-değerleri bulunup kullanılır. Hesaplanan standart normal puanı tablodan bulunan z-değerin altında ise sıfır hipotez kabul edilir. Eğer komputer için standart normal simulasyon programı veya istatistik paketi varsa, hesaplanan z-değer karşıtı olan p-değer bulunup %1 veya %5 anlamlılık duzeyi ile karşılaştırılır ve p-değeri daha büyük ise sıfır hipotez kabul edilir.

Ek açıklama

Tekrarlama sınaması için, örneklem verilerinin birbirini takip etme sürecinde eşitlik veya adaletli oluş (yani yarıyarıya - ve + oluŞu) ele alınan konu değildir; incelenen ardı ardına gelen veri elemanlarının istatistiksel olarak bağımsız olup olmamasıdır.

Tekrarlama sınaması, ortalama ve varyans alınmadan, biraz subjektif olarak hemen kullanılabilen bir rastgellelik sınaması olarak pratikte rağbet görmüştür. Özellikle birbirini zaman içinde takip eden zaman serisi verilerinde rastgele değişme ile sistematik değişme arasında hemen ayrım yapmak için pratikte kullanılabilir.

Tekrarlama istatistiği için örneklem dağıması parametreleri bir parametrik sınama içinde tekrarlama sınamasının etkinlik gücünü bulmak için kullanılamazlar; bu nedenle bu sınamanın gücü için çıkartımsal istatistik bulunamaz. Eğer uygulama mümkün ise, etkinlik gücünün sınanması imkânını temin eden Kolmogorov-Smirnov sınamasının kullanılması tercih edilmelidir.

İçsel kaynaklar

Kaynakça

  1. ^ Siegel,S. ve Castellan,N.J. (1988) Nonparametric Statistics for Behavioural Science (2. rev.ed.) New York: McGraw Hill Tablo F

İlgili Araştırma Makaleleri

Korelasyon, olasılık kuramı ve istatistikte iki rassal değişken arasındaki doğrusal ilişkinin yönünü ve gücünü belirtir. Genel istatistiksel kullanımda korelasyon, bağımsızlık durumundan ne kadar uzaklaşıldığını gösterir.

Varyans Analizi istatistik bilim dalında, grup ortalamaları ve bunlara bağlı olan işlemleri analiz etmek için kullanılan bir istatistiksel modeller koleksiyonudur. Varyans Analizi kullanılmaktayken belirlenmiş bir değişkenin gözlemlenen varyansı farklı değişim kaynaklarına dayandırılabilen varyans bileşenine ayrılır. En basit şekliyle varyans analizi birkaç grubun ortalamalarının birbirine eşit mi eşit değil mi olduğunu sınamak için bir çıkarımsal istatistik sınaması olur ve bu sınama iki-grup için yapılan t-test sınamasını çoklu-gruplar için genelleştirir. Eğer, çoklu değişkenli analiz için birbiri arkasından çoklu iki-örneklemli-t-sınaması yapmak istenirse bunun I. tip hata yapma olasılığını artırma sonucu doğurduğu aşikardır. Bu nedenle, üç veya daha fazla sayıda ortalamaların ististiksel anlamlığının sınama ile karşılaştırılması için Varyans Analizleri daha faydalı olacağı gerçeği ortaya çıkmaktadır.

İstatistik biliminde normallik sınamaları bir seri parametrik olmayan istatistik sınamalar çeşididir. Normallik sınamalarının amacı verilmiş bir veri dizisinin normal dağılıma uygunluk iyiliğinin incelenmesidir. Bir sıra parametrik olmayan sınama geliştirilmiş bulunmasına rağmen birçok istatistikçi pratikte daha az kesin ve daha çok subjektif sağduyu ve ekpertiz gerektiren gösterim karşılaştırmalarını kullanmaktadır. Normallik sınamaları yalnız örneklem verilerinin doğrudan doğruya incelenmesinde kullanılmamakta, fakat özellikle ekonometrik analizlerde tek regresyon denklemi tahmininden sonra çıkan hataların normal olup olmadıklarının araştırılması için de çok kullanılmaktadırlar.

İstatistik bilim dalında, Jarque-Bera sınaması normal dağılımdan ayrılmayı ölçmek için kullanılan bir uygulama iyiliği ölçüsüdür. İlk defa bu sınamayi ortaya atan ekonometrici A.K.Bera ve C.M.Jarque adları ile anılmaktadır.

İstatistik biliminde önemli bir yeri olan parametrik olmayan istatistik parametrik olmayan istatistiksel modeller ve parametrik olmayan çıkarımsal istatistik, özellikle parametrik olmayan istatistiksel hipotez sınamalar ile ilgilenir. Parametrik olmayan yöntemler çok defa dağılımlardan serbest yöntemler olarak da anılmaktadır, çünkü verilerin bilinen belirli olasılık dağılımı gösteren kaynaklardan geldiği varsayımına dayanmamaktadır.

İstatistik bilim dalında Kruskal-Wallis sıralamalı tek yönlü varyans analizi, bağımsız gruplar arası anakütle medyanlarının eşitliğini sınamak amacı ile kullanılan bir parametrik olmayan istatistik sınamasıdır. Adı bu yöntemi ilk defa ortaya koyan William Kruskal ve W. Allen Wallis atıfla konmuştur. Matematiksel olarak ayrı olmakla beraber, tek yönlü varyans analizinin bir değişik şekli olarak görülebilir. Diğer bir görüşe göre Mann-Whitney U sınamasının 3 veya daha çoklu gruplara genişletilmesidir.

İstatistik bilim dalı içinde Friedman sıralamalı iki yönlü varyans analizi sonradan çok tanınmış bir iktisatçı olan Amerikan Milton Friedman tarafından ortaya atılan bir parametrik olmayan istatistik sınamasıdır.

Mann-Whitney U testi niceliksel ölçekli gözlemleri verilen iki örneklemin aynı dağılımdan gelip gelmediğini incelemek kullanılan bir parametrik olmayan istatistik testdir. Aynı zamanda Wilcoxon sıralama toplamı testi veya Wilcoxon-Mann-Whitney testi) olarak da bilinmektedir. Bu testi ilk defa eşit hacimli iki örneklem verileri için Wilcoxon (1945) ortaya atmıştır. Sonradan, Mann and Whitney (1947) tarafından değişik büyüklükte iki örneklem problemleri analizleri için uygulanıp geliştirilmiştir.

İstatistik bilim dalında Yates süreklilik düzeltmesi veya Yates'in ki-kare sınamasıisimsel ölçekli' veya sırasal ölçekli iki değişken için gözlemlenmiş örneklem verileri bir bağımlılık tablosu halinde betimlenmiş iken, ilişkili iki değişken arasında bağımsızlık sınaması yapmak için bazı özel hallerde kullanılır.

İstatistik bilim dalında, Spearman'ın sıralama korelasyon katsayısı veya Spearman'ın rho, bu istatistiksel ölçüyü ilk ortaya atan İngiliz psikolog Charles Edward Spearman'a atfen adlandırılmıştır. Matematik notasyon olarak çok defa eski Yunan harfi ρ ile belirtilir. Bir parametrik olmayan istatistik ölçüsüdür ve iki değişken arasındaki bağımlılık, yani korelasyon, ölçüsü olarak bulunup kullanılır. Bu demektir ki Spearman'in rho (ρ) katsayısı iki değişken için çokluluklar dağılımı hakkında hiçbir varsayım yapmayarak, bu iki değişken arasında bulunan bağlantının herhangi bir monotonik fonksiyon ile ne kadar iyi betimlenebilineceğini değerlendirmek amaçlı incelemedir.

Shapiro-Wilk Testi, örneklemelerde temel alınan istatistiksel yığının normal dağıldığı bir hipotezin sağlamasını yapan istatistiksel bir hipotez testidir. Parametrik olmayan istatistikte normallik testleri arasında yer almaktadır. Shapiro-Wilk Testi, Amerikalı istatistikçi Samuel Shapiro ile Kanadalı istatistikçi Martin Wilk tarafından 1965 yılında ortaya konuldu. Normal dağılım için analizin grafiksel bilgisini bir anahtar şeklinde normal olasılık grafiği kullanarak özetlemeye yönelik tezlerinin sonucudur.

Anderson-Darling sınaması, istatistik bilim dalında, bir parametrik olmayan istatistik sınaması olup örneklem verilerinin belirli bir olasılık dağılımı gösterip göstermediğini sınamak için, yani uygunluk iyiliği sınaması için, kullanılmaktadır. Bu sınama ilk defa 1952'de Amerikan istatistikçileri T.W.Anderson Jr. ile D.A.Darling tarafından yayınlanmıştır. Bu sınama Kolmogorov-Smirnov sınamasının değiştirilmesi ve olasılık dağılımının kuyruklarına daha çok ağırlık verilmesi ile ortaya çıkartılmıştır.

İstatistik bilim dalında, Kolmogorov-Smirnov (K-S) sınaması parametrik olmayan istatistik olup Andrey Kolmogorov ve Nikolai Smirnov adlarındaki iki Sovyet bilim insanı tarafından oluşturulmuştur.

Medyan testi, bir örneklem kümesinin belirli bir medyan değerine sahip olan bir anakütleden gelip gelmediğinin araştırılmasında kullanılan çift taraflı bir testtir. istatistik biliminde çıkarımsal istatistik alanında bir parametrik olmayan istatistik aletidir ve Pearson'un ki-kare testinın özel bir halidir. Mood'un-medyan-testi veya Westenberg-Mood-medyan-testi veya Brown-Mood-medyan-testi olarak da anılır.

F-testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan parameterik çıkarımsal sınama yöntemidir. F-testi sıfır hipotezine göre gerçekte bir F-dağılımı gösteren sınama istatistiği bulunduğu kabul edilen hallerde, herhangi bir istatistiksel sınama yapma şeklidir. Bu çeşit bir istatistiksel sınama önce Ronald Fisher tarafından 1920'li yıllarda tek yönlü varyans analizi için ortaya atılıp kullanılmış ve sonradan diğer şekillerde F-dağılım kullanan sınamalar da ortaya atılınca, bu çeşit sınamalara genel isim olarak F-testi adı verilmesi Ronald Fisher anısına George W. Snecedor tarafından teklif edilip, istatistikçiler tarafından F-testi bir genel isim olarak kabul edilmiştir.

<span class="mw-page-title-main">Anlamlılık seviyesi</span>

Anlamlılık seviyesi, istatistik biliminde, İngiliz istatistikçi Ronald Fisher tarafından çıkartımsal hipotez sınama yönteminin kurulması sırasında kavramlaştırılmış özel bir manası olan bir bilimsel ve istatistiksel terimdir. İstatistiksel anlamlılık eğer bir sonucun gerçekleşme olasılık değerlendirilmesine göre olabilirliği düşük değil ise ortaya çıkar.

Tek anakütle ortalaması için parametrik hipotez sınaması veya tek-örneklem için sınama veya μ için sınama, bir rastgele örneklem ortalaması ile bu örneklemin çekilmiş olduğunu düşündüğümüz anakütlenin μ ile belirtilen "anakütle ortalaması" hakkında bir hipotez değeri belirtilmesinin anlamlı olup olmadığını araştırmamızı sağlayan parametrik hipotez sınamasıdır.

Ki-kare testi veya χ² testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan bazıları parametrik olmayan sınama ve diğerleri parametrik sınama yöntemidir. Bu çeşit istatistiksel sınamalarda test istatistiği için "örnekleme dağılımı", sıfır hipotez gerçek olursa ki-kare dağılımı gösterir veya sıfır hipotez "asimptotik olarak gerçek" olursa, eğer sıfır hipotez gerçekse ve eğer örnekleme hacmi istenilen kadar yeterli olarak büyük ise bir ki-kare dağılımına çok yakın olarak yaklaşım gösterir.

Pearson ki-kare testi nicel veya nitel değişkenler arasında bağımlılık olup olmadığının, örnek sonuçlarının belirli bir teorik olasılık dağılımına uygun olup olmadığının, iki veya daha fazla örneğin aynı anakütleden gelip gelmediğinin, ikiden fazla anakütle oranının birbirine eşit olup olmadığının ve çeşitli anakütle oranlarının belirli değere eşit olup olmadığının araştırılmasında kullanılır. İstatistik biliminin çıkarımsal istatistik bölümünde ele alınan iki-değişirli parametrik olmayan test analizlerinden olan ve ki-kare dağılımı'nı esas olarak kullanan ki-kare testlerinden en çok kullanılanıdır. İngiliz istatistikçi olan Karl Pearson tarafından 1900'da ortaya çıkartılmıştır.

Granger nedensellik sınaması, bir zaman serisinin başka bir zaman serisini tahmininde kullanışlı olup olmadığının bir istatistiksel hipotez sınamasıdır. Normalde, bağlanımlar, "sadece" ilintileri yansıtırlar, ancak Ekonomi Nobel Ödülünü kazanan Clive Granger, belli bir sınamalar kümesinin nedensellikle ilgili bir şeyler ortaya çıkardığını savunmuştur.