Matematikte cebirin temel teoremi karmaşık değişkenli polinomların köklerinin varlığıyla ilgili temel bir sonuçtur. D'Alembert-Gauss teoremi olarak da anılmaktadır.
Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.
Ana başlıklarına göre karmaşık analiz konuları:
Matematiğin bir dalı olan karmaşık analizde, Giacinto Morera'nın ardından adlandırılan Morera teoremi, bir fonksiyonun holomorf olduğunu kanıtlamak için kullanılan temel bir sonuçtur. İtalyan matematikçi Giacinto Morera'nın adını taşımaktadır.
Karmaşık analizde, esaslı tekillik veya daha düzgün bir söylenişle bir fonksiyonun esaslı tekilliği, fonksiyonun çok uç bir davranış gösterdiği katı bir tekilliktir.
Karmaşık analizde Charles Émile Picard'ın ismine atfedilen Picard teoremi analitik bir fonksiyonun görüntü kümesiyle ilişkin ayrı ayrı ama yine de birbirine bağlı iki teoremdir.
Matematiğin bir alt dalı olan karmaşık analizde, Liouville teoremi tam fonksiyonların sınırlılığıyla ilgili temel bir teoremdir.
Karmaşık analizde, bir kaldırılabilir tekillik veya daha düzgün bir söylemle, bir holomorf fonksiyonun kaldırılabilir tekilliği, fonksiyonun görünüşte holomorf olmadığı; ancak daha yakın bir incelemeden sonra fonksiyonun tanım kümesinin bu tekilliği de içerecek şekilde genişletilebileceği bir noktadır.
Karmaşık analizdeki kalıntı teoremi veya bilinen bir diğer adıyla rezidü teoremi, analitik fonksiyonların kapalı eğriler üzerindeki çizgi integrallerini bulmak için kullanılan önemli bir araçtır ve ayrıca sık bir şekilde gerçel integralleri bulmak için de kullanılır. Cauchy integral teoremini ve Cauchy integral formülünü genelleştirir.
Matematikte karmaşık bir fonksiyonun Laurent serisi bu fonksiyonun negatif dereceli terimler de içeren kuvvet serisi temsilidir. Karmaşık fonksiyonların Taylor serileri açılımının mümkün olmadığı durumlarda bu fonksiyonları açıklamak için de kullanılabilir. Laurent serisi ilk defa 1843'te Pierre Alphonse Laurent tarafından yayınlanmış ve bu matematikçinin adını almıştır. Karl Weierstrass 1841'de bu seriyi bulmuş olabilir ancak o zamanda ilk yayınlayan olamamıştır.
Matematikte kök testi bir sonsuz serisinin yakınsaklığını belirlemek için kullanılan bir yöntemdir. Özellikle kuvvet serileriyle bağlantılı olarak yararlıdır.
Matematik'te, poligama fonksiyonu' eşitliğin soludur ve türevin kuvvetine m konulduğunda eşitliğin sağ tarafındaki gama fonksiyonu'nun logaritma'sının (m + 1). türevi olarak tanımlanır.
Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.
Matematikte, özellikle karmaşık analizde, Cauchy-Hadamard teoremi bir kuvvet serisinin yakınsaklık yarıçapını hesaplamakta kullanılan önemli bir sonuçtur. Teorem ismini, Fransız matematikçi Augustin Louis Cauchy ve Jacques Hadamard'dan almıştır. Teorem, ilk defa 1821 yılında Cauchy tarafından yayınlanmıştır. Ancak; Hadamard aynı sonucu tekrar bulana kadar o kadar yaygın olarak da bilinen bir sonuç olmamıştır. Hadamard'ın bu teoremi ilk keşfi 1888'de olmuştur ve hatta bulduğu bu sonucu 1892'de yazdığı tezinde de kullanmıştır.
Matematikte, bir kuvvet serisinin yakınsaklık yarıçapı negatif olmayan bir gerçel sayı veya ∞ olan bir niceliktir. Verilen bir kuvvet serisinin yakınsaklık yarıçapı serinin yakınsak olduğu bölgeyi gösterir. Bu yakınsaklık yarıçapının içinde kalan bölgede, kuvvet serisi mutlak yakınsak ve aynı zamanda tıkız yakınsaktır. Seri yakınsak ise, o zaman bu seri bir analitik fonksiyonun bu yakınsaklık yarıçapının belirlediği bölgenin içinde kalan bölgede yakınsayan bir Taylor serisidir.
Matematiğin bir alt dalı olan karmaşık analizde, holomorf bir f fonksiyonunun sıfırı veya kökü f(a) = 0 eşitliğini sayılan karmaşık a sayısına verilen bir addır. Başka bir deyişle, holomorf fonksiyonların sıfır değerini aldığı karmaşık sayılara o fonksiyonun sıfırları adı verilir.
Karmaşık analizde Casorati-Weierstrass teoremi, holomorf fonksiyonların esaslı tekillikler civarındaki olağanüstü davranışlarını açıklayan bir ifadedir. Teorem, Karl Theodor Wilhelm Weierstrass ve Felice Casorati'ye atfen isimlendirilmiştir.
Matematikte, bir càdlàg fonksiyon, gerçek sayıların bir altkümesi üzerinde tanımlı ve bu tanım kümesinin her noktasında sağdan sürekli, soldan limitli olan bir fonksiyondur. Cadlàg fonksiyonlar, özellikle sıçramaları olan stokastik süreçlerin incelenmesinde önemlidir. Bir tanım kümesi üzerindeki càdlàg fonksiyonların kümesine Skorokhod uzayı denir.