İçeriğe atla

Taban (lineer cebir)

Aynı vektör iki farklı tabanla (mor ve kırmızı) gösteriliyor.

Lineer cebirde, taban, bir vektör uzayını tanımlamak için yeterli vektör kümesidir. Bir V vektör uzayının alt kümesi B bu uzayın tabanıysa, V'nin tüm elemanları B'nin elemanlarının biricik sonlu doğrusal birleşimleri şeklinde yazılabilir. Bu doğrusal birleşimlerin katsayıları, vektörün B üzerindeki bileşenleri ya da koordinatları olarak adlandırılır. Taban B'nin elemanlarına taban vektörleri denir.

Başka bir deyişle, eğer B'nin elemanları doğrusal olarak bağımsızlarsa ve V'nin tüm elemanları bunların birer doğrusal birleşimiyse, B V'nin tabanıdır.[1] Daha genel terimlerle, bir taban doğrusal olarak bağımsız bir germe kümesidir.

Bir vektör uzayının birçok tabanı olabilir; ancak tüm tabanlar aynı sayıda öğeye sahiptir ve bu sayıya vektör uzayının boyutu denir.

Tanım

Bir V vektör uzayının F alanı (mesela gerçel sayılar ya da karmaşık sayılar ) üzerinde tanımlı B tabanı, V'nin doğrusal olarak bağımsız alt kümesidir ve V'yi gerer. Yani B aşağıdaki iki koşulu sağlıyorsa tabandır:

  • doğrusal bağımsızlık özelliği:
B'nin her sonlu alt kümesi için, eğer bazı katsayıları için ise olmalıdır;
  • germe özelliği:
Her vektörü için, eşitliğini sağlayan katsayıları ve vektörleri bulunabilir.

skalerleri v vektörünün B tabanındaki koordinatları olarak adlandırılır ve birinci özellik uyarınca biriciktir.

Sonlu tabana sahip bir vektör uzayı sonlu-boyutludur. Bu durumda, doğrusal bağımsızlık özelliğine bakılırken alt kümeye değil B'nin kendisine bakılır.

Sıklıkla taban vektörlerin sıralanması tercih edilir. Bu, özellikle oryantasyondan bahsedilirken ya da bir vektörün katsayıları tabanla eşleştirilirken anlatımı kolaylaştırır. Sıralanmanın tercih edildiği durumlara sıralı taban denir ve küme yerine dizi ya da benzeri bir nesneyle gösterilir.

Örnek

R2'nin standart tabanları. Mavi ve turuncu vektörler tabanın elemanlarıdır; Yeşil vektör, bu tabanların birleşimi şeklinde yazılabilir, dolayısıyla onlara doğrusal olarak bağımlıdır.
  • Gerçel sayıların sıralı ikililerinden oluşan R2 kümesi, bileşen toplamı
ve skaler çarpım
()
için bir vektör uzayıdır. Bu vektör uzayının basit bir tabanı, ya da standart tabanı, iki vektörden oluşur: e1 = (1,0) ve e2 = (0,1). Çünkü, herhangi bir vektör v = (a, b) R2 şu şekilde yazılabilir:
R2'nin tabanı olabilecek bir diğer vektör kümesi (1, 1) ve (−1, 2)'den oluşur. Bu iki vektör bağımsızdır ve R2'deki tüm vektörleri oluşturabilirler.

Kaynakça

  1. ^ Halmos, Paul Richard (1987). Finite-Dimensional Vector Spaces (4.4yayıncı=Springer bas.). New York. s. 10. ISBN 978-0-387-90093-3. 13 Eylül 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 2 Ocak 2021. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

<span class="mw-page-title-main">Vektör</span> büyüklüğü (veya uzunluğu) ve yönü olan geometrik nesne

Matematik, fizik ve mühendislikte, Öklid vektörü veya kısaca vektör sayısal büyüklüğü ve yönü olan geometrik bir objedir. Vektör, genellikle bir doğru parçası ile özdeşleştirilir. Bir başlangıç noktası A ile bir uç noktası B'yi birleştiren bir ok şeklinde görselleştirilir ve ile belirtilir.

Doğrusal dönüşüm, bir fonksiyon çeşididir. T, M boyutlu bir vektörden N boyuta bir doğrusal dönüşüm ise, o zaman;

<span class="mw-page-title-main">Lineer cebir</span> Uzay matematiği

Doğrusal cebir ya da lineer cebir; matematiğin, vektörler (yöney), vektör uzayları, doğrusal dönüşümler, doğrusal denklem takımları ve matrisleri (dizey) inceleyen alanıdır. Vektör uzayları, modern matematiğin merkezinde yer alan bir konudur. Bundan dolayı doğrusal cebir hem soyut cebirde hem de fonksiyonel analizde sıkça kullanılır. Doğrusal cebir, analitik geometri ile de alakalı olup sosyal bilimlerde ve fen bilimlerinde yaygın bir uygulama alanına sahiptir.

Vektör uzayı veya Yöney uzayı, matematikte ölçeklenebilir ve eklenebilir bir nesnelerin (vektörlerin) uzayına verilen isimdir. Daha resmî bir tanımla, bir vektör uzayı, iki elemanı arasında vektör toplamasının ve skaler denilen sayılarla çarpımın tanımlı olduğu ve bunların bazı aksiyomları sağladığı kümedir. Skalerler, rasyonal veya reel sayılar kümesinden gelebilir, ama herhangi bir cisim üzerinden bir vektör uzayı oluşturmak mümkündür. Vektör uzayları, skalerlerin geldiği cisime göre reel vektör uzayı, kompleks vektör uzayı veya genel bir cisim üzerinden K vektör uzayı şeklinde adlandırılır.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Doğrusal denklem dizgesi</span>

Doğrusal denklem dizgesi, birkaç tane aynı tip değişkenleri içeren birkaç tane doğrusal denklemlerin oluşturduğu topluluktur. Örneğin:

Matematiksel çözümlemede Cesàro toplamı bir sonsuz diziye toplam değeri atamanın farklı bir yoludur. Bir dizi A toplamına yakınsıyorsa bu dizinin Cesàro toplamı da A olur. Cesàro toplamı, yakınsamayan dizilere de değer atayabilmektedir. Ne var ki, artı sonsuz değerine yönelen bir dizi hiçbir koşulda sonlu bir toplam değerine sahip olamayacaktır.

Matematikte katsayı, polinomun bazı terimlerinde, herhangi bir ifadenin bir serisindeki çarpma faktörüdür. Genellikle bir sayıdır fakat ifadede herhangi bir değişken de olabilir. Örneğin;

<span class="mw-page-title-main">Afin dönüşümü</span> koordinat dönüşümü

Geometride, afin dönüşüm veya ilgin dönüşüm, afin uzaylar arasında noktaları, düz çizgileri ve düzlemleri koruyan bir eşlemedir. Ayrıca, paralel çizgi kümeleri bir afin dönüşüm sonrası paralel kalır. Bir afin dönüşümde aynı doğru üzerinde duran noktalar arasındaki mesafe oranları korunmasına rağmen, çizgiler arasındaki açılar ve noktalar arasındaki mesafeler korunmayabilir.

Çifte doğrusallık, matematik'te, çiftdoğrusal işlemci her bir bağımsız dogrusal değişkenlerin üçüncü bir vektör uzayının bir öğesini elde etmek için iki vektör uzayı öğelerini birleştiren bir fonksiyonudur. Matris çarpimi bir örnektir.

Matematik'te Lp uzayı, sonlu boyutlu vektör uzayı için p-norm'un doğal bir genelleme kullanarak tanımlı fonksiyon uzayı'dır.Bazen Lebesque uzayı denir.İlk Frigyes Riesz tarafından Bourbaki grubu Bourbaki 1987 olarak tanıtılmasına rağmen,Henri Lebesgue Dunford & Schwartz 1958, III.3, adına ithaf edilmiştir. fonksiyonal analiz'de Banach uzayı'nın ve topolojik vektör uzaylarının önemli bir sınıfını Lp uzayı formu oluşturur.Lebesgue uzayının fizik, istatistik, finans, mühendislik ve diğer disiplinlerde uygulamaları var.

Çokludoğrusal cebir veya daha genel olarak doğrusal cebirde, bir çokludoğrusal harita her değişken içinde ayrı ayrı doğrusal birkaç değişkenin bir fonksiyondur. Daha kesin olarak, çokludoğrusal harita şöyle bir fonksiyondur:

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.

<span class="mw-page-title-main">Gram–Schmidt işlemi</span>

Matematikte, özellikle doğrusal cebir ve sayısal analizde, Gram–Schmidt süreci bir dizi vektörleri bir iç çarpım uzayı içinde ortonormal etmek için kullanılan bir yöntemdir. İç çarpım uzayında olan vektörler, genellikle Öklid uzayında Rn donatılmış olan standart iç çarpım vektörlerdir. Gram–Schmidt süreci bir sonlu, doğrusal bağımsız kümeni, S = {v1, ..., vk}, kn, alıp ve R'in aynı k-boyutlu alt uzayında yayılan ortogonal kümeni, S′ = {u1, ..., uk}, üretmektedir. 

<span class="mw-page-title-main">Doğrusal germe</span> Doğrusal cebirde alt uzay

Doğrusal cebirde, germe verilen bir vektör kümesini kapsayan en küçük doğrusal altuzaydır. 'yi içeren tüm doğrusal altuzayların kesişimi veya 'nin elemanlarının doğrusal kombinasyonlarının kümesi olarak tanımlanabilir. Dolayısıyla, bir vektör kümesinin germesi bir vektör uzayıdır. Germeler matroidlere ve modüllere genelleştirilebilir.

<span class="mw-page-title-main">Doğrusal olmayan optik</span>

Doğrusal olmayan optik ya da nonlineer optik, ışığın doğrusal olmayan sistem ve malzemelerdeki davranışı ile özelliklerini inceleyen optiğin bir alt dalıdır. Bu malzemelerde elektrik alan () ile polarizasyon yoğunluğu () arasındaki ilişki doğrusal değildir; bu durum daha çok yüksek genlikte (108 V/m seviyelerinde) ışık veren lazerlerde ve lityum niobat gibi kristal yapılarında görülür. Schwinger sınırından daha kuvvetli alanlarda vakum da doğrusallığını kaybeder. Süperpozisyon prensibi bu malzemeler için geçerli değildir.

Matematik'te, doğrusal birleşim ya da lineer kombinasyon, bir kümenin her elemanının birer sabitle çarpılarak sonuca eklendiği ifadedir. Örneğin, x ve y'nin doğrusal birleşimi ax + by'dir. Doğrusal birleşim kavramı doğrusal cebir ve benzeri matematik alanlarında sıkça kullanılır.

<span class="mw-page-title-main">Standart baz</span>

Matematikte, koordinat vektör uzayının ( veya olarak gösterilir) standart tabanı ya da standart bazı (aynı zamanda doğal baz veya ilkesel baz olarak da geçer), 1'e eşit olan dışında tüm bileşenleri sıfır olan vektörlerden oluşan tabanıdır. Örneğin, gerçek sayı çiftleri (x, y) tarafından kurulan öklitçi düzlemi durumunda, standart baz vektörler tarafından oluşturulur.

Matematikte, n boyutlu karmaşık koordinat uzayı, kompleks uzay ya da karmaşık uzay, sıralı tane karmaşık sayıdan oluşan uzaya verilen addır. Bu uzayın elemanlarına karmaşık (kompleks) vektör adı verilir.