İçeriğe atla

Türev alma kuralları

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

Temel türev alma kuralları

Sabit fonksiyonun türevi

Herhangi bir için, eğer ise, o zaman olur.

Kanıt

olsun. O zaman, türevin tanımından yola çıkarak

elde edilir.

Türev almanın doğrusallığı

ve iki fonksiyon, ve iki gerçel sayı olsun. O zaman, fonksiyonunun 'e göre türevi

Leibniz gösterimi ile bu ifade şu şekilde yazılır: Türevin doğrusallığı şu özel halleri de verir:

  • Sabitle çarpım kuralı
  • Toplama kuralı

  • Çıkarma kuralı

Çarpımın türevi

ve iki fonksiyon olsun. O zaman, fonksiyonunun 'e göre türevi

şeklinde olmalıdır. Leibniz gösterimi ile bu ifade şu şekilde yazılır:

Zincir kuralı

fonksiyonunun türevi şu şekilde verilir: Leibniz gösterimi ile bu ifade şu şekilde yazılır: ve genelde şu şekilde kısaltılır:

Ters fonksiyon kuralı

Eğer f fonksiyonunun ters fonksiyonu g ise; yani, ve ise Leibniz gösterimi ile bu ifade şu şekilde yazılır:

Kuvvet yasası, polinomlar, bölme ve çarpmaya göre ters

Polinom ve basit kuvvet kuralı

ise her için

Eğer ise o zaman 'tir ve olur. Kuvvet kuralını toplama ve sabit terimle çarpma kuralı ile birleştirerek polinomların türevi hesaplanabilir.

Çarpmaya göre tersin türevi

Eğer bir fonksiyon, başka bir fonksiyonun çarpmaya göre tersi ise; yani, ile tanımlanmışşsa ve f sıfır değeri almıyorsa

(f nin 0 olmadığı her yerde)

olur. Leibniz gösterimi ile bu ifade şu şekilde yazılır:

Çarpmaya göre tersin türevi böle kuralından ya da kuvvet luralı ve zincir kuralının peşpeşe kullanılmasında elde edilebilir.

Bölmenin türevi

f ve g iki fonksiyon olsun. O zaman, g nin 0 olmadığı her yerde

olur. Bu kural, çarpma kuralı ve çarpmaya göre tersin türevi beraber kullanılarak gösterilebilir.

Genel kuvvet kuralı

Kuvvet kuralı daha genel hale de uygulanabilir. Eğer ise, o zaman a 0 olmadığı ve x pozitif olduğu müddetçe,

olur. Bunun daha genel hali için f ve g iki fonksiyon olsun. O zaman,

Bu halde, çarpmaya göre tersin türevi alınarak bulunabilir.

Üstel ve logaritma fonksiyonlarının türevleri

, fonksiyonun 'e göre türevinin alındığını gösterir.

Eğer olursa , o zaman karmaşık sayılar göz önüne alınmalıdır.

Eğer olursa , o zaman karmaşık sayılar göz önüne alınmalıdır.

Logaritmik türevler

Logaritmik türev bir fonksiyonun logaritmasının türevini ifade etmenin bir başka yoludur

(f pozitif olduğu müddetçe).

Logaritma ile türev alma

Logaritma ile türev alma özellikle karmaşık fonksiyonlar için kullanılır. Logaritma ile türev alınırken ilk önce fonksiyon yazılır ve fonksiyonun doğal logaritması alınır. Sonra da iki tarafında türevi alınır. Son olarakta fonksiyonun türevi izole edilir. Örnek olarak fonksiyonunun logaritma ile türevini alalım:

Türevin çarpma kuralını özel bir durumda, yani ve iken elde etmiş olduk.

Trigonometrik fonksiyonların türevleri

Trigonometrik fonksiyonların türevi, temel prensipler kullanılarak, yani eğrinin eğimini veren cebirsel bir ifade bulunarak elde edilir:[1]

Yukarıdaki ters fonksiyonların bazıları için tanımları gereği şart koymak gerektir. Burada, ters sekant fonksiyonun görüntü kümesi ve ters kosekant fonksiyonunun görüntğ kümesi olarak değerlendirilmiştir. Ayrıca, ter tanjant fonksiyonu da bazen olarak gösterilebilir. Görüntü kümesi ve hangi kuadrantta yer aldığını yansıtır. Birinci ve dördüncü kuadrantta (yani iken ) olur. O zaman kısmi türevler

halinde hesaplanır.

Hiperbolik fonksiyonların türevleri

BU türevlerin üzerindeki sınırlandırmaları görmek için Hiperbolik fonksiyonlar'a bakınız.

Özel fonksiyonlarin türevleri

Gama fonksiyonu
Burada, digama fonksiyonudur.
Riemann zeta fonksiyonu

İntegralin türevi

Diyelim ki

biçiminde verilen bir fonksiyonun xe göre türevini almak istiyoruz. Diyelim ki şu koşullar sağlanıyor:

  • düzleminin koşullarını da sağlayacak belli bir bölgesinde ve fonksiyonları hem hem de değişkeninde sürekliler
  • ve fonksiyonlarının için hem kendileri hem de türevleri sürekli.

O zaman, için

Bu formüle Leibniz integral kuralı denir ve Kalkülüsün temel teoremi ile çıkarılabilir.

n' inci mertebeden türev

Eğer n pozitif tam sayı ise fonksiyonların ninci türevini hesaplamak için bazı kurallar da vardır.

Faà di Bruno's formülü

Eğer f ve g, n kere türevlenebilir fonksiyon olsun. O zaman, Burada, ve kümesi ise Diyofant denklemi nin negatif olmayan bütün çözümlerinden oluşmaktadır.

General Leibniz rule

Eğer f ve g, n kere türevlenebilir fonksiyon olsun. O zaman,

Kaynakça

  1. ^ Bourne, Murray. "1. Derivatives of Sine, Cosine and Tangent". www.intmath.com (İngilizce). 17 Şubat 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 17 Şubat 2020. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Türev</span> Fonksiyonun grafiğine çizilen teğetin eğimini hesaplama tekniğidir.

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi, fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun türevi denir.

Aşağıdaki liste rasyonel fonksiyonların integrallerini vermektedir

<span class="mw-page-title-main">Kısmi türev</span>

Kısmi türev çok değişkenli bir işlevin(fonksiyon), sadece ilgili değişkeni sabit değilken alınan türevdir. Bu tarz türevleri içeren denklemlere kısmi diferansiyel denklem denir.

<span class="mw-page-title-main">İntegral tablosu</span> Vikimedya liste maddesi

İntegral, Matematikteki temel işlemlerden biridir. Bu maddede yaygın integrallerin hesaplanışını bulacaksınız.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

Çarpma kuralı iki veya daha fazla fonksiyonun çarpımının türevinin hesaplanmasında kullanılan bir yöntemdir. Kuralı Gottfried Leibniz türettiği için bu kural Leibniz kuralı olarak da geçer. Kuralın matematiksel ifadesi f ve g sırasıyla f(x) ve g(x) ifadelerinin kapalı formu olmak üzere şöyle verilir:

Termodinamiğin(Isıldevinimin) ikinci yasası, izole sistemlerin entropisinin asla azalamayacağını belirtir. Bunun sebebini izole sistemlerin termodinamik dengeden spontane olarak oluşmasıyla açıklar. Buna benzer olarak sürekli çalışan makinelerin ikinci kanunu imkânsızdır.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

Gauss integrali, Euler–Poisson integrali olarak da bilinir, tüm reel sayılardaki ex2 Gauss fonksiyonunun integralidir. Alman matematik ve fizikçi Carl Friedrich Gauss'dan sonra adlandırlıdı. İntegrali şöyledir:

Catalan sabiti matematikte bazen kombinatorik'te tahminler için kullanılır.Tanımı

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

<span class="mw-page-title-main">Hiperbolik fonksiyon</span>

Matematikte, hiperbolik fonksiyonlar sıradan trigonometrik fonksiyonların analogudur. Temel hiperbolik fonksiyonlar hiperbolik sinüs "sinh", hiperbolik kosinüs "cosh", bunlardan türetilen hiperbolik tanjant "tanh" ve benzer fonksiyonlardır. Ters hiperbolik fonksiyonlar alan hiperbolik sinüsü "arsinh" ve benzeri fonksiyonlardır.

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

Matematikte, Green kuramı basit, kapalı bir C eğrisi etrafındaki çizgi integrali ile C eğrisinin sınırlandırdığı D düzlem bölgesi üzerindeki çift katlı integral arasındaki ilişkiyi verir. Teorem adını matematikçi George Green'den almıştır ve daha genel hâli olan Stokes teoreminin iki boyuttaki özel durumudur.

Trigonometrik fonksiyonların türevleri, trigonometrik bir fonksiyonun türevini yani bir değişkene göre değişim oranını bulmanın matematiksel sürecidir. Örneğin, sinüs fonksiyonunun türevi şeklinde yazılır, bu da sin(x) fonksiyonunun belirli bir açı x = a için değişim oranının o açının kosinüsü ile verildiği anlamına gelir.