İçeriğe atla

Türev

Matematikte türev, bir fonksiyonun tanımlı olduğu herhangi bir noktada değişim yönünü veya hızını veren temel bir kavramdır. Tek değişkenli bir fonksiyonun tanım kümesinin belli bir noktasında türevi (eğer varsa), fonksiyonun grafiğine bu noktada karşılık gelen değerde çizilen teğet doğrunun eğimidir. Teğet doğru, tanım kümesinin bu noktasında fonksiyonun en iyi doğrusal yaklaşımıdır. Bu nedenle türev genellikle anlık değişim oranı ya da daha açık bir ifadeyle, bağımlı değişkendeki anlık değişimin bağımsız değişkendeki anlık değişime oranı olarak tanımlanır. Bir fonksiyonun türevini teorik olarak bulmaya türev alma denilir. Eğer bir fonksiyonun tanım kümesindeki her değerinde hesaplanan türev değerlerini veren başka bir fonksiyon varsa, bu fonksiyona eldeki fonksiyonun (yani türevi alınan fonksiyonun) türevi denir.

Türev için birden fazla farklı gösterim vardır. En yaygın kullanılan ikisi Lagrange gösterimi olan türev işareti ve Leibniz gösterimidir. Fizikçiler arasında Newton gösterimi de yaygındır. Gottfried Wilhelm Leibniz'in adını taşıyan Leibniz gösterimi, iki diferansiyelin oranı olarak gösterilirken, türev işareti için (′) kullanılır. Daha yüksek mertebeden gösterimler tekrarlanan türeve işaret eder ve bunlar genellikle Leibniz gösteriminde diferansiyellere üst simgeler eklenerek, türev işaretinde ise işaret sayısı artırılarak gösterilir. Daha yüksek mertebeden türevlerin fizikte uygulamaları yaygındır. Örneğin, hareket eden bir cismin zamana göre konumunun birinci türevi cismin hızı iken, konumun zaman ilerledikçe nasıl değiştiğini gösteren ikinci türev cismin ivmesidir. Diğer deyişle, ivme, hızın zaman ilerledikçe nasıl değiştiğini gösteren ikinci türevdir.

Türevler, birden fazla gerçek değişken üzerinden tanımlı fonksiyonlar için de genelleştirilebilir. Bu genellemede, türev, grafiği (uygun bir çevirme veya döndürmeden sonra) orijinal fonksiyonun grafiğine en iyi doğrusal yaklaşım olan doğrusal bir dönüşüm olarak yeniden yorumlanır. Jacobi matrisi, bağımsız ve bağımlı değişkenlerin seçimiyle verilen bir baza göre bu doğrusal dönüşümü temsil eden matristir ve bağımsız değişkenlerin her birine göre kısmi türevler alarak hesaplanabilir. Birden fazla değişkenin gerçel değerli bir fonksiyonu için, Jacobi matrisi gradyan vektörüne indirgenir.

Tanım

Limit üzerinden tanım

Fonksiyonun grafiği siyah, teğet geçen doğrunun grafiği kırmızı renkte gösterilmiştir. Teğet çizginin eğimi, fonksiyonun türevine eşittir.
Türevin geometrik tarifi

Bir gerçel değişkenli fonksiyonun tanım kümesindeki bir noktasındaki türevini hesaplamak için tanım kümesinde bu noktasını içeren bir açık aralık olmalıdır. Bu koşulda, eğer

varsa; yani, limit bir gerçel sayıya eşitse, o zaman fonksiyonuna noktasında türevlenebilir ya da 'nin noktasında türevi vardır denir. O halde,

yazılır. Eğer limitin değeri ise, o zaman, 'ye 'nin noktasındaki türevi denir ve kısa bir gösterimle

olarak yazılır.

Limitin sonsuz olması veya var olmaması durumunda, 'ye noktasında türevlenemez, 'nin a noktasında türevi yoktur ya da , a noktasında türevli değildir denir.

Yukarıdaki limit civarında doğrudur. Başka bir deyişle sayısı civarında 'a yaklaştıkça sayısı civarında 'ya yaklaşır. Bu sebepten dolayı, eğer fonksiyonun tanımlı olduğu uç noktalarda türev alma ihtiyacı varsa, limit değerinin tanlı olduğu taraftan, yani soldan limit ya da sağdan limit olarak alınmalıdır.

ε-δ tanımı

Limit üzerinden verilen türev tanımı ε-δ limit tanımı üzerinden de yazılabilir. Eğer limit varsa ve 'ye eşitse, o zaman her için bir vardır öyle ki bütün koşulunu sağlayan ve sıfıra eşit olmayan her için sağlanır. Burada sol taraftaki dik çubuklarla gösterilen mutlak değerdir.

Süreklilik ve türevlenebilme

Bu fonksiyonun işaretlenen noktada fonksiyon aynı noktada sürekli olmadığı için türevi yoktur.

Eğer bir fonksiyonu noktasında türevlenebilir ise, o zaman noktasında noktada sürekli olmak zorundadır. Mesela, bir nokta seçelim ve bu noktada sıçrama gösteren basamak fonksiyonunu ele alalım. Diğer deyişle, fonksiyon a noktasından küçük sayılar için 0 değerini alacaktır, geriye kalan noktalarda ise 1 değerini alacaktır. Limitin tanımına bakıldığı zaman

  • Eğer pozitif bir sayı ise ifadesi 0'a eşit olacaktır. Yani sağdan limit 0'a eşittir.
  • Eğer negatif bir sayı ise sayısı (negatif kalarak) 'a yaklaştıkça ifadesi 'a doğru gidecektir. Yani soldan limit yoktur.
Mutlak değer fonksiyonu süreklidir ama x = 0'da türevli değildir. Bu noktadaki teğet doğruların eğimleri sağdan ve soldan yaklaşımda aynı değere yaklaşmazlar.

Ancak bir fonksiyon tanım kümesindeki her noktada sürekli ise, bu özellik, fonksiyonun her yerde türevli olacağı anlamına gelmez. Mesela, mutlak değer fonksiyonu 0 noktasında süreklidir ama türevli değildir. Nedeni, 0'da türevi tanımlayan limitinin bulunamamasıdır. Ancak, bu fonksiyon haricindeki her noktada türevlidir. Bir diğer örnek olarak, fonksiyonu verilebilir. Bu fonksiyon 0'da türevli olmayıp da başka her yerde türevli olan bir fonksiyondur. Bu fonksiyonun 0'da türevlenebilir olmayışının nedeni limitinin , yani sonsuz olmasıdır. Dolayısıyla mutlak değer fonksiyonunun grafiği 0 noktasında kırıkken, fonksiyonunun grafiği 0'da da kırılmasızdır.

Uygulamada karşılaşılan türevlerin çoğunun her ya da hemen hemen her yerde türevi vardır.

Gösterim

Bir fonksiyonun türevini yazmanın yaygın bir yollarından biri, Gottfried Wilhelm Leibniz tarafından 1675 yılında tanımlanan ve türevi iki diferansiyelin (mesela ve ) bölümü olarak gösteren Leibniz gösterimidir. Bu kullanım, bir fonksiyonu olarak yazarken, yani, bağımlı ve bağımsız değişkenler arasında fonksiyonel bir ilişki gösterilmek istendiğinde yaygın bir şekilde kullanılmaktadır. Bu gösterimde, birinci türev ile gösterilir ve y'nin x'e göre türevi şeklinde okunur. Bu biçimde yazılan türev gösterimi aynı zamanda bir türev operatörünün verilen bir fonksiyona uygulanması olarak da yorumlanabilir. Diğer deyişle, yazılırsa, bu, aynı zamanda, üzerinde x'e göre türev alma operatörü olan 'in uygulanması olarak yorumlanabilir. Daha yüksek türevler, mesela 'in 'inci mertebeden türevi, şu gösterim kullanılarak ifade edilir: . Örneğin, yazıldığında, türevin türevinin alındığını gösterir ve bu tür gösterim uygulamada çok kullanışlı hale gelir. Bazı alternatiflerinin aksine, Leibniz gösterimi, paydada türevlendirme için değişkenin açıkça belirtilmesini içerir ve bu da birden fazla birbiriyle ilişkili nicelikle çalışırken belirsizliği ortadan kaldırır. Bir bileşke fonksiyonun türevi zincir kuralı ile ifade edilir. Eğer, ve ise, o zaman olur.

Türev için bir diğer yaygın gösterim, bir fonksiyonun hemen yanında kesme işaretine benzeyen türev işaretinin kullanılmasıdır; bu gösterim, aynı zamanda Joseph-Louis Lagrange'a atfen Lagrange gösterimi olaraka da bilinir. Birinci türev bu gösterimde halinde yazılır ve f'nin türevi olarak okunur. Benzer şekilde, ikinci ve üçüncü türevler şu şekilde yazılabilir: ve . Bu noktadan sonraki daha yüksek mertebeden türevlerin sayısını belirtmek için bazı yazarlar üst simge olarak Roma rakamlarını kullanırken, diğerleri sayıyı parantez içine koyar: veya gibi. Genel durumda ise, kullanılır.

Newton gösteriminde veya nokta gösteriminde, zamana göre türevi temsil etmek için bir fonksiyon sembolünün üzerine bir nokta yerleştirilir. Eğer zamana bağlı bir fonksiyonsa, o zaman birinci ve ikinci mertebeden türevler sırasıyla ve biçiminde gösterilirler. Bu gösterim yalnızca zaman veya yay uzunluğuna göre türevler için kullanılır. Kullanımı, fizik ve diferansiyel geometrideki diferansiyel denklemlerde de mevcuttur. Ancak, nokta gösterimi yüksek mertebeden türevler (4 veya daha fazla mertebeden) için yönetilemez hale gelir ve birden fazla bağımsız değişkenle baş edemez.

Başka bir gösterim ise diferansiyel operatörü sembolüyle gösteren D-gösterimidir. Bu gösterimde türevi gösterirken operatörü kullanılır. Mesela, 'in birinci türevi gösterilirken yazılır. Daha yüksek mertebeden türevler için üst simge kullanılır: . Bu notasyona bazen Euler gösterimi denir; ancak, bu gösterim Euler tarafından değil Louis François Antoine Arbogast ilk defa kullanılmıştır. Bu notasyonun kısmi türeve yönelik kullanımı da çok elverişlidir. Kısmi türevi belirtmek için, türevlenen değişken bir alt simge ile gösterilir, örneğin fonksiyonu için ⁠'e göre kısmi türev veya olarak yazılabilir. Daha yüksek kısmi türevler ise üst simgeler veya çoklu alt simgelerle gösterilebilir. Örneğin, yine fonksiyonu için ve yazılabilir.

Türev alma kuralları

Temel fonksiyonlar için kurallar

Aşağıda en yaygın temel fonksiyonların türevleri için kurallar verilmiştir. Burada, gerçek bir sayıdır ve doğal logaritmanın tabanı ve yaklaşık olarak 2.71828'dir.

Birleşik fonksiyonlar için kurallar

  • Kuvvet fonksiyonlarının türevi (kuvvet kanunu):
  • Üstel fonksiyon, doğal logaritma ve genel tabanlı logaritmanın türevi
    ,
    ,
    ,
  • Trigonometrik fonksiyonların türevi
  • Ters trigonometrik fonksiyonların türevi
    için
    için

Basit işlemlerle elde edilmiş fonksiyonlar için türevler

Aşağıda, temel fonksiyonlardan basit aritmetik işlemler veya bileşke yoluyla elde edilmiş fonksiyonların türevini hesaplamak için bilinen en temel kurallardan bazıları verilmiştir. Bu amaçla ve fonksiyon olsun.

  • Sabit fonksiyon: eğer sabitse, o zaman her için
  • Toplama kuralı:
    (her ve fonksiyonu ve bütün ve gerçel sayıları için).
  • Çarpma kuralı:
    (her ve fonksiyonu için)
Özel bir durum olarak, her sayısı için olur çünkü is sayısı sabittir ve olur.
  • Bölme kuralı:
    (her ve olan her fonksiyonu için)
  • Bileşke fonksiyonlar için Zincir kuralı : Eğer ise, o zaman

Örnek

olsun. O zaman, Burada ikinci terim zincir kuralı kullanılarak ve üçüncü terim çarpım kuralı kullanılarak hesaplanmıştır. Ayrıca, , , , , ve sabit gibi temel fonksiyonların türevleri de kullanıldı.

Yüksek mertebeden türevler

Daha yüksek mertebeden türevler, bir fonksiyonun tekrar tekrar türevlenmesinin sonucudur. türevlenebilir bir fonksiyon ise

  • nin birinci türevi fonksiyonun türevidir ve ile gösterilir.
  • nin türevi ise nin ikinci türevidir ve ile gösterilir.
  • nin türevi ise nin üçüncü türevidir ve ile gösterilir.

Bu süreç tekrarlanarak, eğer türev varsa, fonksiyonun (n-1)inci türevi başlangıçta alınan fonksiyonun n'inci türevidir. Gösterim kısmında verilen bilgiye de dayanarak,

  • in türevi nin n'inci türevidir ve olarak gösterilir.

Arka arkaya tane türevi hesaplanabilen fonksiyonlara kere türevli ya da k kere türevlenebilir fonksiyonlar denilir. Eğer, inci türev aynı zamanda sürekli ise o zaman bu fonksiyon sınıfına aittir. Eğer bu kere türevlenme sayısında herhangi bir sınır yoksa, yani fonksiyon için hesaplanabilen yüksek mertebeden herhangi bir türevinin türevi yine hesaplanabiliyorsa, bu fonksiyona sonsuz kere türevli ya da sonsuz türevlenebilen fonksiyon denir.

Diğer boyutlarda türev

Vektör değerli fonksiyonlar

Vektör değerli bir fonksiyon gerçel sayılar üzerindeki gerçel bir değişkeni bir vektör uzayındaki vektörlere gönderir. Bir vektör değerli fonksiyon, koordinat fonksiyonlarına ayrılabilir yani yazılabilir. ve 'deki parametrik eğriler bu fonksiyonların güzel bir örneğidir. Bu fonksiyonların koordinat fonksiyonlarının here biri gerçel değerli olduğu için yukarıda verilen türev tanımları her biri için geçerlidir. O zaman, 'nin türevi inin koordinate fonksiyonlarının türevlerinden oluşan bir vektör olur ki buna da tanjant ya da teğet vektör denilir.

Kısmî türev

Kısmî türev, çok değişkenli bir fonksiyonun sadece ilgili değişkeni sabit değilken alınan türevdir. Bu tarz türevleri içeren denklemlere kısmî diferansiyel denklem denir.

Kısmî türevin tanımı

şeklinde tanımlanan n tane bağımsız değişkene bağlı z fonksiyonunun diğer değişkenler sabit tutularak herhangi bir değişkendeki değişimine karşılık fonksiyonun değişim hızı

ifadesine fonksiyonunun değişkenine göre kısmî türevi denir.

şeklinde gösterilir.

ise;

Örnek:

Yönlü türev

Eğer f bir Rn üzerinde gerçek değerli fonksiyon ise koordinat eksenlerinin yönü içinde f in kısmî türevi içinde çeşitli ölçmeler ise (mesela f bir x ve y fonksiyonunun x yönü ve y yönü içinde f 'nin kısmî türevinde çeşitli ölçmeler ise) buna yönlü türev denir.

Bununla birlikte köşegen çizgi y = x boyunca gibi herhangi diğer yön içinde f in yönlü ölçü çeşitleri yoktur.

Burada yönlü türev ölçüsü kullanılıyor.

bir vektörse vnin yönü içinde fin yönlü türevinin x noktasında sınırıdır.

Bâzı durumlarda bu vektörün uzunluğunu değiştirme sonrası yön türevi hesaplamak veya tahmin etmek daha kolay olabilir. Genellikle bu bir birim vektör yönünde bir yönde türevinin hesaplanması içinde sorunu açmak için yapılır. Bunun nasıl çalıştığını görmek için bunu v = λu varsayalım.h = k fark katsayısı içinde yerine konur.Aradaki fark katsayısı:

Bu u sırasıyla fin yönlü türevi için λ zaman içinde farklı katsayısıdır. Dahası sıfıra yönelen k olarak alınan limit olarak aynı h ve k için herhangi diğerinin çarpımıdır. Bunun için Dv(f) = λDu(f). Bu nedenle yeniden ölçeklendirme özelliği, yönlü türevler sık sık sadece birim vektörler için kabul edilir.

Eğer f'in tüm kısmî türevleri var ve x'de sürekli ve formülü ile v yönünde f içinde belirlenen yönlü türev ise

Bu toplam türevin tanımının bir sonucudur. Bu yönlü türev, aşağıda v içinde doğrusaldır. Bu da

Dv + w(f) = Dv(f) + Dw(f).

demektir. Aynı tanım, ayrıca f olduğunda Rm içindeki değerleri ile bir fonksiyondur. Yukardaki tanım, vektörlerin her bir bileşeni için uygulanır. Bu durum içinde yönlü türev Rm içinde bir vektördür.

Toplam türev

Bir fonksiyonu deki açık bir kümeden 'e tanımlanmış bir fonksiyonsa, 'nin seçilen bir noktadaki ve yöndeki yönlü türevi 'nin yine aynı noktada ve aynı yönde en iyi doğrusal yaklaşımıdır. Ancak, ise yönlü türev 'nin davranışı hakkında tam bir açıklama veremez. Toplam türevi bu bağlamda tam bir açıklama sağlamaktadır. Yani, bir vektöründen başlayan herhangi bir vektörü için aşağıdaki doğrusal yaklaşım sağlanır:

Benzer bir şekilde, tek değişkenli fonksiyonlar için tanımlana türevde de buradaki yaklaşım hatasını olabildiğince küçük yapacak şekilde seçilir. 'nin bir noktasındaki toplam türevi , olacak şekilde biricik olarak tanımlanan doğrusal bir dönüşümdür. Burada, , içinde bir vektördür; ancak, içinde bir vektördür.

Toplam türev, eğer bir noktada varsa, o zaman yine aynı noktada bütün kısmi türevler ve yönlü türevler de vardır. Bu halde, bütün vektörü için, 'nin yönündeki yönlü türevi olur. Eğer , koordinat fonksiyonları cinsinden; yani, olacak şekilde yazılırsa, o zaman toplam türev kısmi türevlerin matrisi olarak ifade edilebilir: Bu matrise 'nin noktasındaki Jacobi matrisi denir.

Ayrıca bakınız

İlgili Araştırma Makaleleri

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Türev alma kuralları</span> Vikimedya liste maddesi

Türev, matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıda temel türev alma kuralları ve bazı fonksiyonların türev kuralları yer almaktadır.

<span class="mw-page-title-main">Kısmi türev</span>

Kısmi türev çok değişkenli bir işlevin(fonksiyon), sadece ilgili değişkeni sabit değilken alınan türevdir. Bu tarz türevleri içeren denklemlere kısmi diferansiyel denklem denir.

<span class="mw-page-title-main">Dirac delta fonksiyonu</span>

Adını Paul Dirac' tan alan Dirac delta fonksiyonu tek boyutta

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

<span class="mw-page-title-main">Karmaşık analiz</span>

Karmaşık analiz ya da başka bir deyişle kompleks analiz, bir karmaşık değişkenli fonksiyonları araştıran bir matematik dalıdır. Bir değişkenli karmaşık analize ya da çok değişkenli karmaşık analizle beraber tümüne karmaşık değişkenli fonksiyonlar teorisi de denilir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

Matematikte verilmiş bir P noktasındaki ve V vektörü boyuncaki çok değişkenli bir fonksiyonun yönlü türevi sezgisel olarak fonksiyonun P noktasında, V vektörü boyuncaki anlık değişim oranını temsil eder. Bu yüzden, kısmi türev fikrinin genelleştirmesidir çünkü kısmi türevler alınırken yön her zaman koordinat eksenlerine paralel olarak alınmaktadır.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

<span class="mw-page-title-main">Akım fonksiyonu</span>

Akım Fonksiyonu, eksen simetrisi ile üç boyutta olduğu kadar iki boyutta sıkıştırılamaz akışlar için tanımlanır. Akış hızı bileşenleri, skaler akış fonksiyonunun türevleri olarak ifade edilebilir. Akım fonksiyonu, kararlı akıştaki partiküllerin yörüngelerini gösteren akım çizgileri, çıkış çizgileri ve yörüngeyi çizmek için kullanılabilir. İki boyutlu Lagrange akım fonksiyonu, 1781'de Joseph Louis Lagrange tarafından tanıtıldı. Stokes akım fonksiyonu, eksenel simetrik üç boyutlu akış içindir ve adını George Gabriel Stokes'tan almıştır.

<span class="mw-page-title-main">Gradyan</span>

Bir skaler alanın yön türevi (gradyan) artımın en çok olduğu yere doğru yönelmiş bir vektör alanını verir ve büyüklüğü değişimin en büyük değerine eşittir.

<span class="mw-page-title-main">Gauss fonksiyonu</span>

Matematikte Gauss fonksiyonu, bir fonksiyon biçimidir ve şöyle ifade edilir:

Matematikte, Green kuramı basit, kapalı bir C eğrisi etrafındaki çizgi integrali ile C eğrisinin sınırlandırdığı D düzlem bölgesi üzerindeki çift katlı integral arasındaki ilişkiyi verir. Teorem adını matematikçi George Green'den almıştır ve daha genel hâli olan Stokes teoreminin iki boyuttaki özel durumudur.

Matematiksel fizikte, hareket denklemleri, fiziksel sistemin hareket sürecindeki davranışını, zamanın bir fonksiyonu olarak tanımlar. Daha detaya girmek gerekirse; hareket denklemleri, fiziksel sistemin davranışını devinimsel değişkenler üzerinde tanımlanmış bir matematiksel fonksiyon takımı olarak izah eder. Bu değişkenler genellikle uzay koordinatları ve zamandan ibarettir, ama gerektiğinde momentum bileşenleri de kullanılır. En yaygın değişken seçeneği, fiziksel sistemin özelliklerini uygun şekilde tanımlayan değişkenlerden oluşan genelleştirilmiş koordinatlardır. Klasik mekanikte bu fonksiyonlar öklid uzayında tanımlanmıştır ama görelilikte eğilmiş uzay üzerindeki fonksiyon daha uygundur. Eğer sistemin dinamikleri biliniyor ise, bu fonksiyonları tanımlayan denklemler dinamiğin hareketini izah eden diferansiyel denklemlerin çözümleri olacaktır.

<span class="mw-page-title-main">Lagrange mekaniği</span> Klasik mekaniğin yeniden formüle edilmesi

Lagrange mekaniği, klasik mekaniğin yeniden formüle edilmesidir. İtalyan-Fransız matematikçi ve astronom Joseph-Louis Lagrange tarafından 1788’de geliştirilmiştir.

Hamiltonyan optik ve Lagrange optiği, matematiksel formülasyonlarının büyük bir kısmını Hamilton mekaniği ve Lagrange mekaniği ile paylaşan Geometrik optiğin iki formülasyonudur.

<span class="mw-page-title-main">Jacobi matrisi</span>

Vektör hesabında, Jacobi matrisi bir vektör-değerli fonksiyonun bütün birinci-derece kısmi türevlerini içeren matristir. Bu matris bir kare matris olduğunda, yani fonksiyonun girdi sayısı çıktı sayısının vektör bileşenleriyle aynı sayıdaysa, bu matrisin determinantı Jacobi determinantı olarak adlandırılır. Literatürde sıklıkla Jacobi olarak anılır.

Bu madde Vektör Analizi'ndeki önemli özdeşlikleri içermektedir.