İçeriğe atla

Türbülanslı Prandtl sayısı

Türbülanslı Prandtl sayısı (Prt), momentum girdap difüzyonu ile ısı transferi girdap difüzyonu arasındaki oran olarak tanımlanan bir boyutsuz terimdir. Bu sayı, türbülanslı sınır tabaka akışlarındaki ısı transferi problemlerinin çözümünde oldukça önemlidir. Prt için en basit model Reynolds benzeşimi (İng. Reynolds analogy) olup, türbülanslı Prandtl sayısını 1 olarak belirler. Deneysel verilere dayanarak, Prt'nin ortalama değeri 0,85 olup, sıvının Prandtl sayısı'na bağlı olarak 0,7 ile 0,9 arasında değişmektedir.

Tanım

Girdap difüzyonunun ve dolayısıyla türbülanslı Prandtl sayısının tanıtımı, türbülanslı akışta mevcut olan ekstra kayma gerilmesi ve ısı akısı arasında basit bir ilişki kurmak amacıyla yapılır. Eğer momentum ve termal girdap difüzyonu sıfır ise (belirgin türbülanslı kayma gerilmesi ve ısı akısı yoksa), türbülanslı akış denklemleri laminar akış denklemlerine indirgenir. Momentum transferi için girdap difüzyonu ve ısı transferi için olarak tanımlayabiliriz.
ve
burada belirgin türbülanslı kayma gerilmesi ve belirgin türbülanslı ısı akısıdır.
Türbülanslı Prandtl sayısı şu şekilde tanımlanır:

Türbülanslı Prandtl sayısının genellikle bire eşit olmadığı çeşitli çalışmalarla gösterilmiştir (örneğin, Malhotra ve Kang, 1984; Kays, 1994; McEligot ve Taylor, 1996; ve Churchill, 2002). Bu sayı, moleküler Prandtl sayısının ve diğer parametrelerin güçlü bir fonksiyonudur ve Reynolds benzeşimi, Malhotra ve Kang tarafından belirlendiği üzere, moleküler Prandtl sayısının birden önemli ölçüde farklı olduğu durumlarda uygulanabilir değildir;[1] ve McEligot ve Taylor[2] ile Churchill tarafından ayrıntılı olarak açıklanmıştır.[3]

Uygulama

Türbülanslı momentum sınır tabakası denklemi:

Türbülanslı termal sınır tabakası denklemi ise,
Girdap difüzyonu momentum ve termal denklemlere dahil etmek şu denklemleri verir:

ve

Türbülanslı Prandtl sayısının tanımını kullanarak termal denkleme yerine koymak,
sonucunu verir.

Sonuç

Prandtl sayısı ve türbülanslı Prandtl sayısının her ikisinin de bire eşit olduğu özel durumda (örneğin, Reynolds benzeşiminde), hız profili ve sıcaklık profilleri birbirine eşittir. Bu durum, ısı transferi probleminin çözümünü oldukça basitleştirir. Eğer Prandtl sayısı ve türbülanslı Prandtl sayısı birden farklıysa, türbülanslı Prandtl sayısını bilmek suretiyle momentum ve termal denklemler yine de çözülebilir.

Üç boyutlu türbülansın genel durumunda, girdap viskozitesi ve girdap yayılım katsayısı kavramları geçerliliğini yitirir. Bu nedenle, türbülanslı Prandtl sayısının bir anlamı kalmaz.[4]

Kaynakça

  1. ^ Malhotra, Ashok, & KANG, S. S. 1984. Turbulent Prandtl number in circular pipes. Int. J. Heat and Mass Transfer, 27, 2158-2161
  2. ^ McEligot, D. M. & Taylor, M. F. 1996, The turbulent Prandtl number in the near-wall region for Low-Prandtl-number gas mixtures. Int. J. Heat Mass Transfer., 39, pp 1287--1295
  3. ^ Churchill, S. W. 2002; A Reinterpretation of the Turbulent Prandtl Number. Ind. Eng. Chem. Res., 41, 6393-6401. CLAPP, R. M. 1961.
  4. ^ Kays, W. M. (1994). "Turbulent Prandtl Number—Where Are We?". Journal of Heat Transfer. 116 (2). ss. 284-295. doi:10.1115/1.2911398. 

Kitaplar

  • Kays, William; Crawford, M.; Weigand, B. (2005). Convective Heat and Mass Transfer, Fourth Edition. McGraw-Hill. ISBN 978-0-07-246876-2. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Reynolds sayısı</span>

Akışkanlar dinamiği alanında, Reynolds sayısı, farklı durumlarda akışkan akışı desenlerini tahmin etmeye yardımcı olan bir boyutsuz sayıdır ve eylemsizlik kuvvetleri ile viskoz kuvvetler arasındaki oranı ölçer. Düşük Reynolds sayılarında, akışlar genellikle laminer akış tarafından domine edilirken, yüksek Reynolds sayılarında akışlar genellikle türbülanslı olur. Türbülans, akışkanın hız ve yönündeki farklılıklardan kaynaklanır ve bazen bu yönler kesişebilir veya akışın genel yönüne ters hareket edebilir. Bu girdap akımları, akışı karıştırmaya başlar ve bu süreçte enerji tüketir, bu da sıvılarda kavitasyon olasılığını artırır.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

Isı Denklemi, ısının bir nesne üzerinde, belli bir konumdan ve ne kadar zamanda, nasıl dağılacağını tanımlayan bir parçalı diferansiyel denklemdir. Kartezyen koordinat sisteminde, (x, y, z) konumu ve t zamanı göstermek üzere, ısı denkleminin genel ifadesi:

<span class="mw-page-title-main">Elektromanyetik alan</span>

Elektromanyetik alan, Elektrik alanı'ndan ve Manyetik alan'dan meydana gelir.

Matematikte, Poisson denklemi elektrostatik, makine mühendisliği ve teorik fizik'de geniş kullanım alanına sahip eliptik türdeki Kısmi diferansiyel denklemlerdir. Fransız matematikçi, geometrici ve fizikçi olan Siméon Denis Poisson'dan sonra isimlendirilmiştir. Poisson denklemi

<span class="mw-page-title-main">Yer değiştirme akımı</span>

Elektromanyetizmada yer değiştirme akımı elektrik yer değiştirme alanının değişim oranıyla tanımlanan bir niceliktir. Yer değiştirme akımının birimi akım yoğunluğu cinsinden ifade edilir. Yer değiştirme akımı gerçek akımlar gibi manyetik alan üretir. Yer değiştirme akımı hareketli yüklerin yarattığı bir elektrik akımı değil; zamana bağlı olarak değişim gösteren elektrik alanıdır. Maddelerde, atomun içerisinde bulunan yüklerin küçük hareketlerinin de buna bir katkısı vardır ki buna dielektrik polarizasyon denir.

Dean sayısı (De), akışkanlar mekaniği alanında, özellikle eğri borular ve kanallarda meydana gelen akış dinamiklerinin incelenmesinde kullanılan bir boyutsuz sayıdır. Bu terim, Britanyalı bilim insanı William Reginald Dean'in adını taşımaktadır. Dean, laminer akış durumunda, düz bir borudaki Poiseuille akışından, çok küçük bir eğrilik içeren bir boruya kadar olan akışın teorik çözümünü bir bozulma yöntemi kullanarak ilk kez sunmuştur. Bu çalışma, eğri borulardaki akış mekaniklerinin anlaşılmasında temel bir adım olarak kabul edilir.

<span class="mw-page-title-main">Planck yasası</span> belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eden terim

Planck yasası belirli bir sıcaklıkta termal denge durumunda bulunan bir kara cisim ışımasının yaydığı elektromanyetik radyasyonu ifade eder. Yasa 1900 yılında Max Planck bu ismi önerdikten sonra isimlendirilmiştir. Planck yasası modern fiziğin ve kuantum teorisinin öncül bir sonucudur.

Geometrik optik veya ışın optiği, ışık yayılmasını ışınlarla açıklar. Geometrik optikte ışın bir soyutlama ya da enstrumandır; ışığın belirli şartlarda yayıldığı yola yaklaşmada kullanışlıdır.

<span class="mw-page-title-main">Maxwell ilişkileri</span>

Maxwell ilişkileri İkinci dereceden türevlerin simetri ve termodinamik potansiyellerin tanımlarından türetilebilen termodinamik denklemler dizisidir. Bu ilişkiler 19.yüzyıl fizikçisi James Clerk Maxwell tarafından adlandırılmıştır.

<span class="mw-page-title-main">Taşınım olayı</span>

Taşınım olayı (veya taşınım fenomeni), mühendislik, fizik ve kimyada gözlemlenen ve üzerine araştırma gerçekleştirilen sistemlerin, kütle, enerji, yük, momentum ve açısal momentum değişimiyle ilgilenen çalışmalardır. Sürekli ortamlar mekaniği ve termodinamik gibi pek çok farklı alandan yararlanırken, ele aldığı konular üzerindeki ortaklıklara önemli düzeyde vurgu yapmaktadır.

Termal akışkan dinamiği alanında, Nusselt sayısı (Nu), Wilhelm Nusselt'in adını taşıyan ve bir sınır tabakasındaki toplam ısı transferinin, kondüksiyon ısı transferine oranını ifade eden bir boyutsuz sayıdır. Toplam ısı transferi, kondüksiyon ve konveksiyonu içerir. Konveksiyon ise adveksiyon ve difüzyon bileşenlerinden oluşur. Kondüktif bileşen, konvektif koşullar altında ancak hareketsiz bir akışkan için varsayılarak ölçülür. Nusselt sayısı, akışkanın Rayleigh sayısı ile yakından ilişkilidir.

Akışkanlar mekaniğinde, Rayleigh sayısı (Ra, Lord Rayleigh'e ithafen) bir akışkan için kaldırma kuvveti ilişkili bir boyutsuz sayıdır. Bu sayı, akışkanın akış rejimini karakterize eder: belirli bir alt aralıkta bir değer laminer akışı belirtirken, daha yüksek bir aralıktaki değer türbülanslı akışı belirtir. Belirli bir kritik değerin altında, akışkan hareketi olmaz ve ısı transferi konveksiyon yerine ısı iletimi ile gerçekleşir. Çoğu mühendislik uygulaması için Rayleigh sayısı büyük olup, yaklaşık 106 ile 108 arasında bir değerdedir.

Akışkanlar dinamiğinde, bir akışkanın Schmidt sayısı, momentum difüzivitesi ile kütle difüzyonu oranı olarak tanımlanan bir boyutsuz sayıdır ve eşzamanlı momentum ve kütle difüzyonu konveksiyon süreçlerinin gerçekleştiği akışkan akışlarını karakterize etmek amacıyla kullanılır. Bu sayı, Alman mühendis Ernst Heinrich Wilhelm Schmidt (1892–1975) adına ithaf edilmiştir.

Stanton sayısı (St), bir akışkana aktarılan ısının akışkanın ısı kapasitesine oranını ölçen bir boyutsuz sayıdır. Stanton sayısı, Thomas Stanton (mühendis)'in (1865–1931) adına ithafen verilmiştir. Bu sayı, zorlanmış konveksiyon akışlarındaki ısı transferini karakterize etmek için kullanılır.