İçeriğe atla

Türbülans

Türbülans

Türbülans veya Çalkantı (Latince turbare - dönmek, şaşmak) bir akışkanın hareket hâlindeki düzensizliğidir. Akışkanlar dinamiğinde, türbülans veya türbülanslı akış, basınç ve akış hızında meydana gelen kaotik, stokastik değişimlerle tanımlanan bir akış rejimidir. Akışkanın düzenli katmanlar hâlinde aktığı laminer akışın aksine türbülanslı akışlar düzensiz biçimde karışarak hareket eder. Akışın hangi rejimde olduğu atalet kuvvetlerinin viskozite kuvvetlerine oranını belirten boyutsuz Reynolds sayısı ile tahmin edilebilir. Örneğin, tipik bir boru akışı için Reynolds sayısı yaklaşık 2300'ü aştıktan sonra genellikle akış, türbülanslı rejime geçer. Yüksek Reynolds sayıları türbülanslı rejimin habercisi olarak sayılabilirse de bu geçişin gerçekleştiği Reynolds sayısı birçok faktöre bağlıdır ve farklı problemlerde çok daha yüksek veya düşük bir Reynolds sayısında türbülanslı rejime geçiş olabilir.

Türbülans, pek çok fizikçi tarafından ele alınmış, ancak geçerli bir çözüm bulunamamış problemlerden biriydi. Düzgün akışa sahip bir akışkanın molekülleri birbirlerine mümkün olduğu kadar yakın kalmaya ve benzer davranışlar göstermeye meyillidir. 19. yüzyılın başlarında düzenli akışa sahip akışkanlara ait temel problemler çözülmüş ve akışkanlar dinamiğinin temelleri kurulmuştu. Ancak bilim uzun süre türbülans üzerinde çalışmayı reddetmiş, türbülansı daha çok bir mühendislik problemi olarak görmüştür.

Uçağın kanatlarının üstü ve altı arasındaki basınç farkı (wingtip vortex, wingtip vortices) ndan uçağın arkasında oluşan girdaplardan kaynaklanan kuyruk türbülansının görselleştirilmiş hali (NASA)

Türbülans, modern bakış açısı ile her ölçek düzeyinde ortaya çıkan düzensizlik olarak tanımlanır. Türbülans üzerine ilk önemli çalışmalar Andrey Kolmogorov tarafından başlatılmıştır. Ancak Kolmogorov'un önermeleri yeterli olmamıştır. Türbülansa yönelik daha başarılı bir teori ise Lev Landau tarafından 1944 yılında ortaya konabilmiştir.

David Ruelle, türbülans üzerine çalışmaya başladığında Floris Takens ile birlikte türbülansın bağımsız üç hareket ile betimlenebileceği önermesini sundular. Lorenz'in denklemleri de üç değişken içeriyordu. Takens ve Ruelle'nin bu çalışmasının en önemli sonucu garip çeker kavramı olmuştur.

Bir çeker ya da çekici (attractor), faz uzayında bir noktadan ibarettir. Eğer sistem sürtünmesiz bir sarkaç gibi periyodik hareket yapıyorsa, sistemin faz uzayındaki yörüngesi bir çemberdir ve bu çemberin merkezi kararlı bir çekerdir. Çeker, sistemin çıkışın bir çekim havzası gibi kendi üzerine kapanmaya zorlamaktadır. Sistem sürtünmesiz ise yörünge doğal olarak bir çember olacaktır. Sistemin enerjisi arttırıldığında değişen tek şey çemberin yarıçapıdır. Sisteme sürtünme eklendiğinde ise tüm olası yörüngeler bir helezon çizerek merkezde son bulur.

Ruelle, türbülans halindeki akışkanın içinde görülen sarmal akıntıların faz uzayında bir çekiciye doğru çekildiğini hayal etti. Hiç kuşkusuz, bu çekici sabit bir nokta değildir. Bu tıpkı bir yay tarafından enerji kazandırılan sürtünmeli bir sarkacın davranışına benzemektedir. Sarkaç bazı başlangıç koşullarında sıfır noktasına dönecek, bazı durumlarda ise salınmaya devam edecektir. Böyle bir sistemin iki çekeri vardır; ilki kapalı bir sarmal, ikincisi ise sabit bir noktadır. Kısa vadede faz uzayındaki her bir nokta dinamik sistemin muhtemel davranış biçimlerinden birini betimler. Uzun vadede ise çekerlerin kendisinden başka mümkün olan davranış biçimi yoktur.

Yukarıda tanımı yapılan çekiciler geleneksel fizik içerisinde yer alan çekicilerdi. Takens ve Ruelle, farklı türden çekerler düşündüler. Bu yeni tür çekici, faz uzayında sınırlı bir bölgede kendini tekrarlamadan bir yörünge çizmeliydi. Yörüngenin kendi kendini kesmesi daha önce geçilen bir noktanın tekrarlanması anlamına gelir ve bu durumda yörünge periyodik olur. Başka bir deyişle yörünge sonlu bir alan içinde sonsuz uzunluklu olmalıydı. Ruelle ve Takens bu çekicinin tarifini yapmış ve olması gerektiğini söylemişlerdi ama Mandelbrot henüz fraktalları icat etmemişti. Ruelle ve Takens'in tarif ettikleri 'garip çeker' ise Lorenz tarafından 1963'te resmedilmişti.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Mekanik</span> kuvvetlere veya yer değiştirmelere maruz kalan fiziksel cisimlerle ilgilenen bilim

Mekanik, fiziğin fiziksel nesnelerin hareketleriyle, özellikle kuvvet, madde ve hareket arasındaki ilişkilerle ilgili alanıdır. Nesnelere uygulanan kuvvetler yer değiştirmeler veya bir nesnenin çevresine göre konumunda değişikliklerle sonuçlanır. Fizik'in bu dalının kökenleri Antik Yunanistan'da Aristoteles ve Arşimet'in yazılarında bulunur.. Erken modern dönem sırasında, Galileo, Kepler ve Newton gibi bilim adamları şimdiki klasik mekaniğin temellerini attılar. Klasik mekanik, duran veya ışık hızından çok daha düşük hızlarla hareket eden cisimlerle ilgili klasik fizikin bir dalıdır. Kuantum aleminde olmayan cisimlerin hareketini ve üzerindeki kuvvetleri inceleyen bilim dalı olarak da tanımlanabilir. Alan bugün kuantum teorisi açısından daha az anlaşılmıştır.

<span class="mw-page-title-main">Akışkanlar mekaniği</span>

Akışkanlar mekaniği, akışkanların davranışlarını ve onlara etkiyen kuvvetleri inceleyen fizik dalı. Makine, inşaat, kimya ve biyomedikal gibi mühendislik dallarının yanı sıra jeofizik, okyanus bilimi, meteoroloji, astrofizik ve biyoloji gibi farklı birçok disiplinde kullanılır.

<span class="mw-page-title-main">Diferansiyel denklem</span>

Matematikte, diferansiyel denklem, bir ya da birden fazla fonksiyonu ve bunların türevlerini ilişkilendiren denklemdir. Fizik, kimya, mühendislik, biyoloji ve ekonomi alanlarında matematiksel modeller genellikle diferansiyel denklemler kullanılarak ifade edilirler. Bu denklemlerde, fonksiyonlar genellikle fiziksel ya da finansal değerlere, fonksiyon türevleriyse değerlerin değişim hızlarına denk gelir.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Sürükleme</span>

Sürükleme; akışkanlar mekaniğinde bir cismin, bir akışkan içindeki hareketine gösterdiği direnç. Sürükleme İngilizce drag sözcüğüne atfen "D" harfi ile gösterilir.

<span class="mw-page-title-main">Reynolds sayısı</span>

Akışkanlar dinamiği alanında, Reynolds sayısı, farklı durumlarda akışkan akışı desenlerini tahmin etmeye yardımcı olan bir boyutsuz sayıdır ve eylemsizlik kuvvetleri ile viskoz kuvvetler arasındaki oranı ölçer. Düşük Reynolds sayılarında, akışlar genellikle laminer akış tarafından domine edilirken, yüksek Reynolds sayılarında akışlar genellikle türbülanslı olur. Türbülans, akışkanın hız ve yönündeki farklılıklardan kaynaklanır ve bazen bu yönler kesişebilir veya akışın genel yönüne ters hareket edebilir. Bu girdap akımları, akışı karıştırmaya başlar ve bu süreçte enerji tüketir, bu da sıvılarda kavitasyon olasılığını artırır.

<span class="mw-page-title-main">Aerodinamik</span> Fizik terimi ve bilim dalı

Aerodinamik, hareket eden katı kütlelerin havayla etkileşimlerini inceleyen bilim dalıdır. Aerodinamik sözcüğü Yunancadan gelmiş olup bu bilim dalı havanın hareketi ile ilgilidir. Parçalı olarak katı bir cisim ile irtibata geçmiş olması, havanın hareketi ve uçağın kanadı gibi, buna örnek olarak gösterilebilir. Aerodinamik akışkan dinamiği ve gaz dinamiğinin bir alt dalıdır ve aerodinamiğin birçok bakış açısı, teorisi bu alanlarda ortaktır. Aerodinamik genellikle gaz dinamiği için kullanılır; gaz dinamiğinin aerodinamikten farkı, tüm gazlar için çalışması ve aerodinamik gibi yalnızca hava ile sınırlanmamış olmasıdır.

Dean sayısı (De), akışkanlar mekaniği alanında, özellikle eğri borular ve kanallarda meydana gelen akış dinamiklerinin incelenmesinde kullanılan bir boyutsuz sayıdır. Bu terim, Britanyalı bilim insanı William Reginald Dean'in adını taşımaktadır. Dean, laminer akış durumunda, düz bir borudaki Poiseuille akışından, çok küçük bir eğrilik içeren bir boruya kadar olan akışın teorik çözümünü bir bozulma yöntemi kullanarak ilk kez sunmuştur. Bu çalışma, eğri borulardaki akış mekaniklerinin anlaşılmasında temel bir adım olarak kabul edilir.

<span class="mw-page-title-main">Dinamik sistem</span>

Bu sayfa dinamik sistemlere dair genel bakış açılarını içerir ayrıntılı bilgi için dinamik sistem (tanım) veya çalışmak amaçlı dinamik sistemler teorisine bakabilirsiniz.

<span class="mw-page-title-main">Yığılma diski</span> büyük bir merkezi cisim etrafında yörüngesel hareket halinde dağılmış olan malzeme tarafından oluşturulmuş bir yapı

Yığılma diski, büyük bir merkezi cisim etrafında yörüngesel hareket halinde dağılmış olan malzeme tarafından oluşturulmuş bir yapıdır. Bu merkezi cisim sıklıkla bir yıldızdır. Sürtünme kuvveti, dengesiz ışınım, manyetik hidrodinamik etkiler ve diğer kuvvetler, diskteki yörüngede bulunan malzemenin merkezi cisme doğru sarmal bir yapı oluşturmasına yol açan kararsızlıklara neden olur. Kütle çekimi ve sürtünme kuvvetleri malzemeyi sıkıştırarak sıcaklığını yükseltir ve elektromanyetik radyasyon yayılmasına neden olur. Bu radyasyonun frekans aralığı, merkezi cismin kütlesine bağlıdır. Spektrumun X ışını kısmındaki nötron yıldızları ve kara delikler etrafında bulunan genç yıldızlar ve önyıldızların yığılma diskleri, kızılötesinde ışık saçar. Yığılma disklerindeki salınım modlarının incelenmesi diskosismoloji olarak adlandırılır.

<span class="mw-page-title-main">Akışkanlar mekaniği tarihi</span>

Akışkanlar mekaniğinin tarihi, fizik ve mühendislik tarihinin temel bir koludur. Akışkanların hareketi ve onlara etki eden kuvvetlerin incelenmesi tarih öncesine kadar uzanmaktadır. İnsanın suya bağımlılığı, meteorolojik koşullar ve iç biyolojik süreçler nedeniyle sürekli bir evrim geçirmiştir.

<span class="mw-page-title-main">D'Alembert paradoksu</span>

Akışkanlar dinamiğinde D'Alembert paradoksu veya hidrodinamik paradoks, 1752'de Fransız matematikçi Jean le Rond d'Alembert tarafından ortaya atılmıştır. D'Alembert, matematiksel olarak sıkıştırılamaz ve akmazlığın olmadığı akışlarda kullanılan ve sanal fonksiyon teorisini baz alan potansiyel teorinin önemli bir açığını keşfetmiştir. Kaldırma kuvveti ile ilgili etkili sonuçlar veren potansiyel teori kullanıldığında, üzerinde akış olan her cisim için sürüklenme kuvveti sıfır oluyordu.

<span class="mw-page-title-main">Statik basınç</span>

Akışkanlar mekaniğinde, statik basınç birçok kullanışa sahiptir.

<span class="mw-page-title-main">Taşınım olayı</span>

Taşınım olayı (veya taşınım fenomeni), mühendislik, fizik ve kimyada gözlemlenen ve üzerine araştırma gerçekleştirilen sistemlerin, kütle, enerji, yük, momentum ve açısal momentum değişimiyle ilgilenen çalışmalardır. Sürekli ortamlar mekaniği ve termodinamik gibi pek çok farklı alandan yararlanırken, ele aldığı konular üzerindeki ortaklıklara önemli düzeyde vurgu yapmaktadır.

<span class="mw-page-title-main">Karıştırma (proses mühendisliği)</span>

Endüstriyel proses mühendisliğinde karıştırma, heterojen bir fiziksel sistemin daha fazla homojen hale getirilmesi karıştırılmasını içeren birim işlemdir.

Lattice Boltzmann yöntemi, akışkanlar dinamiği problemlerini sayısal olarak çözmek için kullanılan bir yöntemdir. Bu yöntem, Boltzmann denkleminin basitleştirilmiş bir versiyonunu çözerek akışkanın makroskopik özelliklerini tahmin eder. LBM, özellikle karmaşık sınırlara ve serbest yüzeylere sahip akış problemlerinde etkili bir şekilde kullanılabilir.

Hidrolik çap, DH, akışkan dinamiğinde, dairesel olmayan boru ve kanallardaki akışları ele alırken yaygın olarak kullanılan bir terimdir. Bu terim kullanılarak, birçok hesaplama dairesel bir borudaki gibi yapılabilir. Kesit alanı, boru veya kanal boyunca sabit olduğunda şu şekilde tanımlanır:

<span class="mw-page-title-main">Sürükleme katsayısı</span> bir nesnenin hava veya su gibi sıvı bir ortam içinde sürtünmesi ya da direnç göstermesini nicelendirmek için kullanılan boyutsuz miktar

Akışkanlar dinamiği alanında, sürükleme katsayısı, bir nesnenin hava veya su gibi bir akışkan ortamında maruz kaldığı sürükleme veya direnç miktarını belirlemek için kullanılan bir boyutsuz niceliktir. Sürükleme denkleminde kullanılır ve daha düşük bir sürükleme katsayısı, nesnenin daha az aerodinamik veya hidrodinamik sürüklemeye sahip olacağını ifade eder. Sürükleme katsayısı her zaman belirli bir yüzey alanına bağlı olarak değerlendirilir.

Richardson sayısı (Ri), Lewis Fry Richardson (1881–1953) adını taşıyan boyansi teriminin akış kayma gerilmesi terimine oranını ifade eden bir boyutsuz sayı:

Akışkanlar dinamiğinde, bir akışkanın Schmidt sayısı, momentum difüzivitesi ile kütle difüzyonu oranı olarak tanımlanan bir boyutsuz sayıdır ve eşzamanlı momentum ve kütle difüzyonu konveksiyon süreçlerinin gerçekleştiği akışkan akışlarını karakterize etmek amacıyla kullanılır. Bu sayı, Alman mühendis Ernst Heinrich Wilhelm Schmidt (1892–1975) adına ithaf edilmiştir.