İçeriğe atla

Tümleme

Tümleme, bir şeyin eksiğini tamamlayarak onu bir bütün haline getirmek için kullanılır. Bu işlemi yapan şey için tümleç, tümleyen, tümleyici, onun sıfat hali için de tümleyici, tümler sözcükleri kullanılır.

Bu ve bundan türetilen sözcüklerin çeşitli anlamları vardır:

  • Tümleyicilik (matematik), vektör uzayında iki vektörün iç çarpımlarının sıfıra eşit olma halidir.
  • Tümleyen (küme kuramı), matematikte, E evrensel kümesinin bir A altkümesinin dışında olan öğelerden oluşan küme, A kümesinin tümleyeni veya tümler kümesidir.
  • Tümleme (mantık), mantıkta, bir ifadenin doğruluk değerini tersine çeviren işlemdir.
  • Tümleç (dilbilgisi), eylemin anlamını tümleyen ve herhangi bir ad durumunda bulunan ad veya tamlama
  • Tümleme (bilgisayar bilmi), ikili sistemde negatif sayıları temsil etmek için kullanılan bir yöntem.
  • Tümleme yöntemi (bilgisayar bilmi), sadece pozitif sayılar toplamak yoluyla bir sayıyı diğerinden çıkarma yöntemi.
  • Tümleme (edebiyat) bir eseri tamamlamak için yazılan kısmı.
  • Tümler açı, geometride, toplamı 90 derece olan iki açı.

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Tam sayı</span> sıfırın sağında bulunan sayılar büyükken solunda bulunan sayılar küçüktür

Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.

<span class="mw-page-title-main">Topoloji</span>

Topoloji, matematiğin ana dallarından biridir. Yunancada yer, yüzey veya uzay anlamına gelen topos ve bilim anlamına gelen logos sözcüklerinden türetilmiştir. Topoloji biliminin kuruluş aşamalarında yani 19. yüzyılın ortalarında, bu sözcük yerine aynı dalı ifade eden Latince analysis situs ür.

Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.

<span class="mw-page-title-main">Aritmetik</span> temel matematik dalı

Aritmetik; matematiğin sayılar arasındaki ilişkiler ile sayıların problem çözmede kullanımı ile ilgilenen dalı. Aritmetik kavramı ile genellikle sayılar teorisi, ölçme ve hesaplama kastedilir. Bununla birlikte bazı matematikçiler daha karmaşık çeşitli işlemleri de aritmetik başlığı altında değerlendirirler.

<span class="mw-page-title-main">İntegral</span> fonksiyon eğrisinin altında kalan alan

İntegral veya tümlev, toplama işleminin sürekli bir aralıkta alınan hâlidir. Türev ile birlikte kalkülüsün temelini oluşturan iki işlemden birisidir. Kalkülüsün temel teoremi sayesinde aynı zamanda türevin ters işlemidir.

<span class="mw-page-title-main">İstatistik</span>

İstatistik veya sayım bilimi, belirli bir amaç için veri toplama, tablo ve grafiklerle özetleme, sonuçları yorumlama, sonuçların güven derecelerini açıklama, örneklerden elde edilen sonuçları kitle için genelleme, özellikler arasındaki ilişkiyi araştırma, çeşitli konularda geleceğe ilişkin tahmin yapma, deney düzenleme ve gözlem ilkelerini kapsayan bir bilimdir. Belirli bir amaç için verilerin toplanması, sınıflandırılması, çözümlenmesi ve sonuçlarının yorumlanması esasına dayanır. Bu çerçevede yapılan işlemlerin tümüne sayımlama denir.

<span class="mw-page-title-main">Soyut cebir</span> Matematiğin bir alanı

Soyut cebir veya soyut matematik, matematiğin bir alanı olup, cebirsel yapılar üzerinde çalışır. Cebirsel yapılar, elemanları üzerinde belirli işlemlerin uygulandığı kümelerdir ve gruplar, halkalar, alanlar, modüller, vektör uzayları, kafesler ve alan üzerindeki cebirler içerir. Soyut cebir terimi, 20. yüzyılın başlarında temel cebirden ayırmak amacıyla türetilmiştir. Soyut cebir ileri matematik için temel hale geldikçe basitçe "cebir" olarak adlandırılırken, "soyut cebir" terimi pedagoji dışında nadiren kullanılır.

<span class="mw-page-title-main">Doğal dil işleme</span> bilgisayar bilimi ve dil bilimi alanı

Doğal Dil İşleme, yaygın olarak NLP olarak bilinen yapay zekâ ve dilbilim alt kategorisidir. Türkçe, İngilizce, Almanca, Fransızca gibi doğal dillerin işlenmesi ve kullanılması amacı ile araştırma yapan bilim dalıdır.

Boş küme, matematikte hiçbir ögesi olmayan kümeye verilen addır. Boş kümeyi göstermek için ∅ simgesi kullanılır.

<span class="mw-page-title-main">Toplama</span> aritmetik işlem

Toplama işlemi dört ana aritmetik işlemden biridir. Diğer aritmetik işlemler çıkarma, çarpma ve bölmedir. İki doğal sayının toplaması sayı değerlerinin toplamını üretir. Yandaki resimdeki örnek, toplamda beş elma oluşturan üç elma ve iki elmanın toplamasını göstermektedir. Bu gözlem, matematik ifadesi ile "3 + 2 = 5" olarak ifade edilir

Vektör uzayı veya Yöney uzayı, matematikte ölçeklenebilir ve eklenebilir bir nesnelerin (vektörlerin) uzayına verilen isimdir. Daha resmî bir tanımla, bir vektör uzayı, iki elemanı arasında vektör toplamasının ve skaler denilen sayılarla çarpımın tanımlı olduğu ve bunların bazı aksiyomları sağladığı kümedir. Skalerler, rasyonal veya reel sayılar kümesinden gelebilir, ama herhangi bir cisim üzerinden bir vektör uzayı oluşturmak mümkündür. Vektör uzayları, skalerlerin geldiği cisime göre reel vektör uzayı, kompleks vektör uzayı veya genel bir cisim üzerinden K vektör uzayı şeklinde adlandırılır.

<span class="mw-page-title-main">Küme</span> matematiksel anlamda tanımsız bir kavramdır. Bu kavram "nesneler topluluğu veya yığını" olarak yorumlanabilir.

Küme, matematikte farklı nesnelerin topluluğu veya yığını olarak tanımlanmaktadır. Bu tanımdaki "nesne" soyut ya da somut bir şeydir. Fakat her ne olursa olsun iyi tanımlanmış olan bir şeyi, bir eşyayı ifade etmektedir. Örneğin, "Tüm canlılar topluluğu", "Dilimiz alfabesindeki harflerin topluluğu", "Masamın üzerindeki tüm kâğıtlar" tümcelerindeki nesnelerin anlaşılabilir, belirgin oldukları, kısaca iyi tanımlı oldukları açıkça ifade edilmektedir. Dolayısıyla bu tümcelerin her biri bir kümeyi tarif etmektedir. O halde, matematikte "İyi tanımlı nesnelerin topluluğuna küme denir." biçiminde bir tanımlama yapılmaktadır.

Türkçede ismin hâlleri ; kelimeleri belirtme (yükleme), yönelme, bulunma ve ayrılma açısından tanımlayan, sözcüğün yalın hâl ile hâl eki almış durumlarından her biridir. Türkçede ismin beş farklı hâlleri vardır:

Komplemantasyon, Fransızca complémentation 'dan Türkçeye girmiş, tamamlama, tümleme, bütünleme anlamlarına karşılık gelen bir sözcüktür. Bu eylemi yapan şeye 'kompleman' veya 'komplement', bunun sıfat haline 'komplemanter' veya 'komplementer', bunu yapma özelliğine 'komlemantarite' denir.

Matematikte fonksiyon uzayı bir X kümesinden bir Y kümesine tanımlı fonksiyonların oluşturduğu kümeye verilen bir addır. Fonksiyonlar kümesi yerine fonksiyon uzayı denilmesinin nedeni matematiğin kendi içindeki uygulamalarında bu kümenin genellikle topolojik uzay veya vektör uzayı olarak ortaya çıkmasıdır.

<span class="mw-page-title-main">İkinin tümleyeni</span>

Bir ikili sayının ikiye tümlenmesi, kendisinden büyük ve 2'nin tam sayı üssü olan en küçük tam sayıdan çıkarılması ile gerçekleştirilir. Elde edilen sayının ikili sayı aritmetiğinde orijinal sayının eksi işaretlisi olarak davranması nedeniyle, tam sayı değerleri bilgisayarda temsil etmek için kullanılan ikinin tümleyeni gösterimi bu işlemi temel almıştır. -1 ile çarpmanın ikinin tümleyeni kullanılarak gerçekleştirildiği bu gösterime göre oluşturulmuş sayıların değerleri aşağıdaki formül kullanılarak hesaplanabilir.

Sonsuz küçükler, ölçülemeyecek kadar küçük cisimleri tarif etmek için kullanılır. Sonsuz küçüklerden yararlanmaktaki asıl amaç nicelik bakımından çok küçük olsalar da hala açı, eğim gibi belirli özelliklere sahip olmalarıdır. Sonsuz küçük kelimesi 17. Yüzyıl Modern Latin uydurma sözcüğü olan bir dizideki “sonsuzuncu” terim anlamına gelen infitesimustan gelmektedir. İlk olarak 1670 yılı civarında Nicolas Marecator ya da Gottfried Wilhelm Leibniz tarafından kullanılmıştır. Genel anlamla sonsuz küçük bir cisim herhangi bir uygulanabilir ölçümden küçük olan ama boyut olarak sıfırdan farklı ya da çok küçük olan ve bu nedenle sıfırdan ayırt edilemeyecek durumdaki cisimdir. Bundan dolayı sonsuz küçük ifadesi sıfat olarak kullanıldığında aşırı derecede küçük anlamına gelmektedir. Bir anlam verebilmek için genellikle aynı bağlamdaki başka bir sonsuz küçük ile karşılaştırılması gerekir. Sonsuz miktarda çok sonsuz küçük bir integral üretmek amacıyla toplanır. Arşimet “Mekanik Teoremlerin Metodu” adı verilen çalışmasında katı cisimlerin hacimlerini ve bölgelerin alanlarını bulmak için Bölünmezler Yöntemi olarak bilinen yöntemi kullanmıştır. Yayımlanan resmi bilimsel eserlerinde aynı problemleri Tüketme Yöntemi ile çözmüştür. 15. Yüzyılda Cusalı Nicholas’ın üzerinde çalıştığı bir çemberin alanını çemberi sonsuz kenarlı bir çokgen olarak hesaplama yöntemi 17. Yüzyılda Johannes Kepler tarafından geliştirilmiştir. Simon Stevin’in 16. Yüzyılda tüm sayıların ondalık gösterimi üzerine yaptığı çalışmalar gerçek sürekliliğe temel hazırladı. Bonaventura Cavalieri’nin bölünmezler yöntemi klasik yazarların sonuçlarını genişletmesine olanak sağladı. Bölünmezler yöntemi, eş boyutlu varlıklardan oluşan geometrik figürler ile ilişkilidir. John Wallis’in sonsuz küçük görüşü geometrik figürleri figürle aynı boyuta sahip sonsuz yapı bloğuna bölmesi ile bölünmezler yönteminden ayrılır. Bu görüş integral kalkülüsünün genel yöntemleri için temel hazırlamıştır. Sonsuz küçükleri alan hesabında ile göstermiştir. Leibniz tarafından kullanılan sonsuz küçükler, sonlu ve sonsuz sayılar için başarılı olan Süreklilik Kuramı ve belirlenemez miktarlar için gösterimi değiştirmenin yönteminin sadece belirlenebilir olanları göstererek yapılacağını anlatan Aşkın Homojenite Yasası gibi bulgusal prensiplere dayanmaktaydı. 18. Yüzyıl sonsuz küçüklerin Leonard Euler ve Joseph-Louis Lagrange gibi matematikçiler tarafından sıklıkla kullanıldığı bir zaman aralığı olmuştur. Augustin-Louis Cauchy sonsuz küçükleri Cour d’Analyse adlı eserinde sürekliliği açıklamak için ve Dirac delta fonksiyonunun ilk formlarından birini tanımlarken kullanmıştır. Tıpkı Cantor ve Dedekind’ın Stevin’in sürekliliğinin daha soyut bir halini geliştirdikleri gibi Paul du Bois-Reymond da sonsuz küçük ile zenginleştirilmiş süreklilik üzerine fonksiyonların artış oranını temel alan bir seri çalışma yapmıştır. Du Bois-Reymond’un çalışması Emile Boral ve Thoralf Skolem’ e ilham verdi. Borel Bois-Reymond’un çalışmalarını Cauchy’nin sonsuz küçüklerin artış oranına dair çalışmalarıyla bağlantı kurdu. Skolem 1934’te aritmetiğin standart dışı ilk modellerini geliştirdi. Süreklilik ve sonsuz küçük yasalarının matematiksel “implementasyonu” Abraham Robinson tarafından 1961’de yapılmıştır. Robinson ayrıca Edwin Hewirr’in 1948’de ve Jerzy Łoś’un 1955’teki çalışmalarına dayanarak standart dışı analizi geliştirmiştir. Hipergerçekler sonsuz küçük ile zenginleştirilmiş sürekliliği sağlar ve transfer prensibi de Leibniz’in süreklilik yasasını sağlar.

<span class="mw-page-title-main">İşaret (matematik)</span>

Matematikte işaret kavramı, sıfırdan farklı her bir reel sayının pozitif veya negatif olduğunu belirtir. Her ne kadar bazen işaretli sıfır kullanılsa bile, sıfırın kendisi işaretsizdir. Matematik ve fizikte kullanılan reel sayıların toplamaya göre tersini ifade etmek için işaret değiştirme işlemi yapılır.

<span class="mw-page-title-main">Gram–Schmidt işlemi</span>

Matematikte, özellikle doğrusal cebir ve sayısal analizde, Gram–Schmidt süreci bir dizi vektörleri bir iç çarpım uzayı içinde ortonormal etmek için kullanılan bir yöntemdir. İç çarpım uzayında olan vektörler, genellikle Öklid uzayında Rn donatılmış olan standart iç çarpım vektörlerdir. Gram–Schmidt süreci bir sonlu, doğrusal bağımsız kümeni, S = {v1, ..., vk}, kn, alıp ve R'in aynı k-boyutlu alt uzayında yayılan ortogonal kümeni, S′ = {u1, ..., uk}, üretmektedir.