İçeriğe atla

Tüketerek tanıtlama

Tüketerek tanıtlama veya kaba kuvvet yöntemi ya da durum çözümlemesi olarak bilinen yöntem, tanıtlanacak önermenin sonlu sayıda duruma bölünerek her durumun ayrı ayrı tanıtlandığı bir matematiksel tanıt yoludur. Tüketerek tanıtlama iki aşamada gerçekleştirilir:

  • Durumların sonlu sayıda olduğunu gösteren bir tanıt verilir; yani tanıtlanacak olan önermenin her gerçeklemesinin durumlardan en az birinin koşullarına uyduğunu göstermek.
  • Durumlardan her birini tanıtlamak.

Bunun aksine Eski Yunan bilginlerinden Eudoxus of Cnidus'un tüketme yöntemi (tanıtlama) yöntemi matematiksel limitleri geometrik ve esas olarak özenli bir şekilde hesaplama yöntemiydi.

Örnek

Her küp sayısı 9'un katı ya da 9'un katının 1 eksiği ya da 1 fazlasıdır.

Tanıt

Her küp sayısı bir tam sayısının küpüdür. Bu tam sayı ya 3'ün katıdır ya da 3'ün katının 1 eksiği ya da bir fazlasıdır. Bu nedenle aşağıdaki üç durum tüm durumları kapsar:

  • Durum 1: n sayısı 3'ün bir katı ise, n sayısının küpü 27 sayısının katıdır dolayısıyla kesin olarak 9'un bir katıdır.
  • Durum 2: n sayısı 3'ün bir katının 1 fazlası ise n sayısının küpü 9'un bir katının 1 fazlasıdır.
  • Durum 3: n sayısı 3'ün bir katının 1 eksiği ise, n sayısının küpü 9'un bir katının 1 eksiğidir.

[Tanıtı tamamlamak için, 2 ve 3 durumlarındaki önermeler basit cebir kullanılarak tanıtlanabilir.]

Kaç durum vardır?

Tüketerek tanıtlama yönteminde, izin verilen durum sayısı için bir üst sınır yoktur. Bazı hallerde yalnızca iki ya da üç durum bulunur. Diğer hallerde ise birkaç düzine durum olabilir. Örneğin, satrançta bir oyun sonu problemini çözmek bazen bir düzine ya da daha fazla hamle dizisinin incelenmesini gerektirebilir. Bazı durumlarda ise yüzlerce hamle (durum) incelenmek zorundadır.

Dört Renk Teoreminin ilk tanıtı 1.936 durumu olan bir tüketerek tanıtlama tanıtıydı. Verilen tanıt tartışma konusu olmuştu çünkü durumların çoğu matematikçi eliyle değil de bir bilgisayar programı tarafından denetlenmişti. Dört renk teoreminin günümüzde bilinen en kısa tanıtı dahi 600'ü aşkın duruma sahiptir.

Matematikçiler çok sayıda durumu olan tanıtlamalardan kaçınmayı yeğlerler; çünkü bu tanıtlar zarafetten yoksun görünürler, teoremin yalnızca şans eseri doğru olduğu ve temelinde bir ilke ya da bağlantının bulunmadığı izlenimini bırakırlar. Bununla birlikte, tüketerek tanıtlama dışında hiçbir yöntemle tanıtı bulunamayan teoremler mevcuttur. Dört renk teoremine ek olarak, tüketerek tanıtlamanın yapıldığı büyük tanıtlar için şu örnekler verilebilir:

  • Sonlu Basit Grupları Sınıflandırma teoremi.
  • Kepler Konjektürü.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematiksel ispat</span> ilgilenilen bir önermenin, belirli aksiyomlar esas alınarak, doğru olduğunu gösterme yöntemi

Matematiksel ispat, matematiksel bir ifade için türetilmiş varsayımların mantıksal olarak doğru olduğu sonucunu garantileyen, çıkarımsal bir argümandır. Argüman, teoremler gibi önceden oluşturulmuş diğer ifadeleri kullanabilir; lakin prensipte her delil, kabul edilen çıkarım kurallarıyla birlikte yalnızca aksiyom olarak bilinen belirli temel veya orijinal varsayımlar kullanılarak oluşturulabilir.

Matematikte doğrudan tanıtlama, verilen bir önermenin var olan matematiksel teoremlerden yararlanarak doğru olduğunu gösterme işlemidir.

<span class="mw-page-title-main">Aritmetiğin temel teoremi</span>

Matematik'te aritmetiğin temel teoremi, aynı zamanda benzersiz çarpanlara ayırma teoremi ve asal çarpanlara ayırma teoremi olarak da adlandırılır, şunu belirtir: 1'den büyük her tamsayı, benzersiz bir şekilde asal sayıların üslerinin çarpımı olarak gösterilebilir.

<span class="mw-page-title-main">Asal sayı</span> sadece iki pozitif tam sayı böleni olan doğal sayılardır

Bir asal sayı, yalnızca 1'den büyük olup kendisinden küçük iki doğal sayının çarpımı olarak ifade edilemeyen bir doğal sayıdır. 1'den büyük ve asal olmayan doğal sayılara bileşik sayı adı verilir. Örneğin, 5 bir asal sayıdır çünkü onu bir çarpım olarak ifade etmenin mümkün olan yolları, 1 × 5 veya 5 × 1, yalnızca 5 sayısını içermektedir. Ancak, 4 bir bileşik sayıdır çünkü bu, her iki sayının da 4'ten küçük olduğu bir çarpım şeklindedir. Asal sayılar, aritmetiğin temel teoreminden ötürü sayı teorisi alanında merkezi öneme sahiptir: 1'den büyük her doğal sayı, ya bir asal sayıdır ya da asal sayıların çarpımı olarak, sıralamalarından bağımsız bir şekilde, benzersiz olarak çarpanlarına ayrılabilir.

Eksiklik Teoremi, Kurt Gödel'in 1931 yılında doktorasında yer verdiği "Principia Mathematica Gibi Dizgelerin Biçimsel Olarak Karar Verilemeyen Önermeleri Üzerine" başlıklı makalesinde 4. önerme olarak geçer. Sezgisel olarak matematikte belitlere (aksiyom) dayanan her sistemin tutarlı olması dahilinde eksik olması gerektiğini bildirir.

Matematiksel mantık, biçimsel mantığın matematiğe uygulanmasıyla ilgilenen bir matematik dalıdır. Metamatematik, matematiğin temelleri ve kuramsal bilgisayar bilimi alanlarıyla yakınlık gösterir. Matematiksel mantığın temel konuları biçimsel sistemlerin ifade gücünün ve biçimsel ispat sistemlerinin tümdengelim gücünün belirlenmesidir.

<span class="mw-page-title-main">Öklid geometrisi</span> Öklide atfedilen matematiksel-geometrik sistem

Öklid geometrisi, İskenderiyeli Yunan matematikçi Öklid’e atfedilen matematiksel bir sistemdir ve onun Elemanlar adlı geometri üzerine ders kitabında tarif edilmektedir. Öklid'in yöntemi, sezgisel olarak çekici küçük bir aksiyom seti varsaymaktan ve bu aksiyomlara dayanarak birçok başka önermeyi (teoremleri) çıkarmaktan ibarettir. Öklid'in sonuçlarının çoğu daha önceki matematikçiler tarafından ifade edilmiş olsa da, Öklid, bu önermelerin kapsamlı bir tümdengelimli ve mantıksal sisteme nasıl uyabileceğini gösteren ilk kişi oldu. Elemanlar, ilk aksiyomatik sistem ve resmi ispatın ilk örnekleri olarak ortaokulda (lise) hala öğretilen düzlem geometrisi ile başlar. Üç boyutlu katı geometrisi ile devam ediyor. Elemanlar’ın çoğu, geometrik dilde açıklanan, şimdi cebir ve sayı teorisi olarak adlandırılan şeyin sonuçlarını belirtir.

<span class="mw-page-title-main">Pierre de Fermat</span> Fransız matematikçi ve avukat

Pierre de Fermat, neredeyse eşitlik (“adequality”) tekniği de dahil olmak üzere sonsuz küçük hesaplara yol açan erken gelişmeler için yaptığı katkılarla bilinen bir Fransız matematikçiydi. Özellikle, eğri çizgilerin en büyük ve en küçük koordinatlarını bulmanın özgün bir yöntemini keşfetmesiyle tanınır; bu, o zamanlar bilinmeyen diferansiyel kalkülüsünkine benzer ve sayı teorisi üzerine yaptığı araştırmadır. Analitik geometri, olasılık ve optiğe kayda değer katkılarda bulundu. En çok ışık yayılımı hakkındaki Fermat ilkesi ve Diophantus'un Aritmeticasının bir kopyasının kenarındaki bir notta açıkladığı sayı teorisindeki Fermat'nın Son Teoremi ile tanınır. Aynı zamanda Fransa'nın Toulouse Parlamentosu'nda avukattı.

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

abc sanısı veya abc konjektürü sayılar teorisindeki bir sanı yani konjektürdür. 1985'te Joseph Oesterlé ve David Masser tarafından ortaya atılmıştır. Biri diğer ikisinin toplamı şeklinde ifade edilen üç tam sayının özellikleri üzerine kurulmuştur. Problemi çözmek için açık bir strateji bulunmadığı halde, sanı bazı ilginç sonuçları sayesinde tanınmıştır.

Matematiğin bir alt dalı olan karmaşık analizde, holomorf bir f fonksiyonunun sıfırı veya kökü f(a) = 0 eşitliğini sayılan karmaşık a sayısına verilen bir addır. Başka bir deyişle, holomorf fonksiyonların sıfır değerini aldığı karmaşık sayılara o fonksiyonun sıfırları adı verilir.

Tanrının algoritması, Rubik Küpü ile benzeri bulmaca ve matematiksel oyunların çözüm yöntemlerini konu alan bir kavram. Sözü edilen bulmacaları olabilecek en az adımda çözmeyi başaran algoritmayı tanımlamak için kullanılan bu terim, herhangi bir anda çözüme giden en kısa yolu bulabilen bir bilgenin var olduğu düşüncesine dayanmaktadır.

Cantor teoremi, kümeler teorisinin başlıca teoremlerindendir. Teorem; boş olmayan herhangi bir X kümesinin kuvvet kümesinin kardinalitesinin, X kümesinin kardinalitesinden büyük olduğunu söyler. P(X) ile kuvvet kümesi gösterilirse, teoreme göre X kümesi ile P(X) arasında birebir eşleme yapılamaz.

<span class="mw-page-title-main">Pergel ve çizgilik çizimleri</span>

Pergel ve çizgilik çizimi, belli uzunlukta doğrular, belli büyüklükte açılar ve diğer geometrik şekilleri çizmek için sadece ideal bir çizgilik ve pergel kullanılmasıdır.

Sonsuz küçükler, ölçülemeyecek kadar küçük cisimleri tarif etmek için kullanılır. Sonsuz küçüklerden yararlanmaktaki asıl amaç nicelik bakımından çok küçük olsalar da hala açı, eğim gibi belirli özelliklere sahip olmalarıdır. Sonsuz küçük kelimesi 17. Yüzyıl Modern Latin uydurma sözcüğü olan bir dizideki “sonsuzuncu” terim anlamına gelen infitesimustan gelmektedir. İlk olarak 1670 yılı civarında Nicolas Marecator ya da Gottfried Wilhelm Leibniz tarafından kullanılmıştır. Genel anlamla sonsuz küçük bir cisim herhangi bir uygulanabilir ölçümden küçük olan ama boyut olarak sıfırdan farklı ya da çok küçük olan ve bu nedenle sıfırdan ayırt edilemeyecek durumdaki cisimdir. Bundan dolayı sonsuz küçük ifadesi sıfat olarak kullanıldığında aşırı derecede küçük anlamına gelmektedir. Bir anlam verebilmek için genellikle aynı bağlamdaki başka bir sonsuz küçük ile karşılaştırılması gerekir. Sonsuz miktarda çok sonsuz küçük bir integral üretmek amacıyla toplanır. Arşimet “Mekanik Teoremlerin Metodu” adı verilen çalışmasında katı cisimlerin hacimlerini ve bölgelerin alanlarını bulmak için Bölünmezler Yöntemi olarak bilinen yöntemi kullanmıştır. Yayımlanan resmi bilimsel eserlerinde aynı problemleri Tüketme Yöntemi ile çözmüştür. 15. Yüzyılda Cusalı Nicholas’ın üzerinde çalıştığı bir çemberin alanını çemberi sonsuz kenarlı bir çokgen olarak hesaplama yöntemi 17. Yüzyılda Johannes Kepler tarafından geliştirilmiştir. Simon Stevin’in 16. Yüzyılda tüm sayıların ondalık gösterimi üzerine yaptığı çalışmalar gerçek sürekliliğe temel hazırladı. Bonaventura Cavalieri’nin bölünmezler yöntemi klasik yazarların sonuçlarını genişletmesine olanak sağladı. Bölünmezler yöntemi, eş boyutlu varlıklardan oluşan geometrik figürler ile ilişkilidir. John Wallis’in sonsuz küçük görüşü geometrik figürleri figürle aynı boyuta sahip sonsuz yapı bloğuna bölmesi ile bölünmezler yönteminden ayrılır. Bu görüş integral kalkülüsünün genel yöntemleri için temel hazırlamıştır. Sonsuz küçükleri alan hesabında ile göstermiştir. Leibniz tarafından kullanılan sonsuz küçükler, sonlu ve sonsuz sayılar için başarılı olan Süreklilik Kuramı ve belirlenemez miktarlar için gösterimi değiştirmenin yönteminin sadece belirlenebilir olanları göstererek yapılacağını anlatan Aşkın Homojenite Yasası gibi bulgusal prensiplere dayanmaktaydı. 18. Yüzyıl sonsuz küçüklerin Leonard Euler ve Joseph-Louis Lagrange gibi matematikçiler tarafından sıklıkla kullanıldığı bir zaman aralığı olmuştur. Augustin-Louis Cauchy sonsuz küçükleri Cour d’Analyse adlı eserinde sürekliliği açıklamak için ve Dirac delta fonksiyonunun ilk formlarından birini tanımlarken kullanmıştır. Tıpkı Cantor ve Dedekind’ın Stevin’in sürekliliğinin daha soyut bir halini geliştirdikleri gibi Paul du Bois-Reymond da sonsuz küçük ile zenginleştirilmiş süreklilik üzerine fonksiyonların artış oranını temel alan bir seri çalışma yapmıştır. Du Bois-Reymond’un çalışması Emile Boral ve Thoralf Skolem’ e ilham verdi. Borel Bois-Reymond’un çalışmalarını Cauchy’nin sonsuz küçüklerin artış oranına dair çalışmalarıyla bağlantı kurdu. Skolem 1934’te aritmetiğin standart dışı ilk modellerini geliştirdi. Süreklilik ve sonsuz küçük yasalarının matematiksel “implementasyonu” Abraham Robinson tarafından 1961’de yapılmıştır. Robinson ayrıca Edwin Hewirr’in 1948’de ve Jerzy Łoś’un 1955’teki çalışmalarına dayanarak standart dışı analizi geliştirmiştir. Hipergerçekler sonsuz küçük ile zenginleştirilmiş sürekliliği sağlar ve transfer prensibi de Leibniz’in süreklilik yasasını sağlar.

Pólya'nın sayma teoremi, bir küme üzerindeki bir grup davranışının yörünge sayısını veren Burnside önsavını izleyen ve genelleştiren bir kombinatorik teoremidir. Teorem; ilk olarak 1927 yılında J. Howard Redfield tarafından yayımlanmış, 1937'de ise teoremin ortaya çıkardığı sonuçları birçok sayma problemine, özellikle kimyasal bileşiklerin sayımına uygulayarak büyük ölçüde yaygınlaştıran George Pólya tarafından yeniden keşfedilmiştir.

<span class="mw-page-title-main">Hackenbush</span>

Hackenbush, matematikçi John Horton Conway tarafından icat edilen iki oyunculu bir oyundur. Birbirlerine ve bir "zemin" çizgisine uç noktaları ile bağlı renkli çubukların herhangi bir konfigürasyonunda oynanabilir.

Lagrange teoremi, grup teorisinde herhangi bir sonlu grubunun herhangi bir altgrubunun derecesinin 'nin derecesini böldüğünü belirten bir teoremdir. Adını matematikçi Joseph-Louis Lagrange'dan almıştır.

<span class="mw-page-title-main">Çin kalan teoremi</span>

Matematikte Çin kalan teoremi, bir n tamsayısının birkaç tam sayıya bölümünden kalanlar biliniyorsa, n'in bu sayıların çarpımına bölümünden kalanın bulunabileceğini belirtir. Buradaki koşul, n'e bölümlerinden kalanlarını bildiğimiz sayıların birbirleriyle aralarında asal olmaları gerekliliğidir.

<span class="mw-page-title-main">Rolle teoremi</span> reel türevlenebilir bir fonksiyonun iki eşit değeri arasındaki durağan noktalar üzerine bir reel analiz teoremi

Kalkülüste, Rolle teoremi veya Rolle lemması temel olarak, iki farklı noktada eşit değerlere sahip herhangi bir gerçel değerli türevlenebilir fonksiyonun, aralarında bir yerde, teğet doğrusunun eğiminin sıfır olduğu en az bir noktaya sahip olması gerektiğini belirtir. Böyle bir nokta, durağan nokta olarak bilinir. Bu nokta, fonksiyonun birinci türevinin sıfır olduğu noktadır. Teorem adını Michel Rolle'den almıştır.