İçeriğe atla

Sıfır matrisi

Matematikte, özellikle doğrusal cebirde, sıfır matris tüm elemanları sıfır olan bir matristir.[1][2][3][4] Bu matris cebirdeki sıfır sayısının rolünü oynar.[5] Bazı sıfır matris örnekleri:

Ayrıca bakınız

Kaynaklar

  1. ^ "Comprehensive List of Algebra Symbols". Math Vault (İngilizce). 25 Mart 2020. 1 Nisan 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Ağustos 2020. 
  2. ^ Linear Algebra, Undergraduate Texts in Mathematics, Springer, 1987, s. 25, ISBN 9780387964126, 9 Ağustos 2020 tarihinde kaynağından arşivlendi, erişim tarihi: 24 Ekim 2020, We have a zero matrix in which aij = 0 for all ij. ... We shall write it O. 
  3. ^ "Intro to zero matrices (article) | Matrices". Khan Academy (İngilizce). 19 Eylül 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Ağustos 2020. 
  4. ^ "Zero Matrix". mathworld.wolfram.com (İngilizce). 10 Mayıs 2000 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Ağustos 2020. 
  5. ^ Özdemir, Y., Aksoy, Y. and Hiperlink (Firm) (1995) Çözümlü lineer cebir problemleri. İstanbul: Hiperlink. Available at: http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=667460&lang=tr&site=eds-live&scope=site (Accessed: 24 October 2020).

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Lineer cebir</span> Uzay matematiği

Doğrusal cebir ya da lineer cebir; matematiğin, vektörler (yöney), vektör uzayları, doğrusal dönüşümler, doğrusal denklem takımları ve matrisleri (dizey) inceleyen alanıdır. Vektör uzayları, modern matematiğin merkezinde yer alan bir konudur. Bundan dolayı doğrusal cebir hem soyut cebirde hem de fonksiyonel analizde sıkça kullanılır. Doğrusal cebir, analitik geometri ile de alakalı olup sosyal bilimlerde ve fen bilimlerinde yaygın bir uygulama alanına sahiptir.

<span class="mw-page-title-main">Matris (matematik)</span>

Matematikte matris veya dizey, dikdörtgen bir sayılar tablosu veya daha genel bir açıklamayla, toplanabilir veya çarpılabilir soyut miktarlar tablosudur. Dizeyler daha çok doğrusal denklemleri tanımlamak, doğrusal dönüşümlerde çarpanların takibi ve iki parametreye bağlı verilerin kaydedilmesi amacıyla kullanılırlar. Dizeylerin toplanabilir, çıkartılabilir, çarpılabilir, bölünebilir ve ayrıştırılabilir olmaları, doğrusal cebir ve dizey kuramının temel kavramı olmalarını sağlamıştır.

<span class="mw-page-title-main">Doğrusal denklem dizgesi</span>

Doğrusal denklem dizgesi, birkaç tane aynı tip değişkenleri içeren birkaç tane doğrusal denklemlerin oluşturduğu topluluktur. Örneğin:

Determinant kare bir matris ile ilişkili özel bir sayıdır.

<span class="mw-page-title-main">Simetrik matris</span>

Doğrusal cebirde, transpozu kendisine eşit olan matrislere simetrik matris denir. A bir simetrik matris olsun. Bu durumda:

Vektör otoregresyon (VAR), tek değişkenli AR modellerini genelleştiren, çoklu zaman serileri arasındaki gelişimi ve karşılıklı bağımlılığı veren ekonometrik bir modeldir. Bir VAR'daki tüm değişkenler, modeldeki değişkenin kendi gecikmeleri ve diğer tüm değişkenlerin gecikmelerine bağlı olarak değişkenin gelişimini açıklayarak her bir değişken için bir denklem ile simetrik olarak ele alır. Bu özellik sebebiyle Christopher Sims, ekonomik ilişkilerin tahmininde teoriden bağımsız bir metot olarak VAR modelleri kullanımını, böylelikle yapısal modellerin "inanılmaz tanımlama kısıtlamalarına" bir alternatif olarak destekler.

<span class="mw-page-title-main">Boşuzay</span>

Doğrusal cebirde, bir matrisinin boşuzayı (kernel, null space) bağıntısını sağlayan tüm vektörlerinin oluşturduğu kümedir. Bir matrisinin 'boşuzay' boyutu, matrisine çarpıldığında sıfır sonucunu veren birbirinden bağımsız yöneylerine göre hesaplanır.

Tridiagonal matris algoritması, Thomas algoritması olarak da bilinmektedir, sayısal lineer cebirde tridiagonal denklem sistemlerini çözmek için kullanılan basitleştirilmiş bir Gauss eleme yöntemidir.

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

Matematik ve özellikle doğrusal cebirde, bir çarpık-simetrik matris, transpozu aynı zamanda olumsuzu olan bir kare matristir; yani durumunu sağlar. Eğer satırı ve sütunundaki giriş ise, çarpık-simetrik matris ilişkisine sahiptir. Örneğin, aşağıdaki matris çarpık-simetriktir:

Doğrusal cebirde sütun vektör veya sütun matris, m × 1 matrisidir. Örneğin; tek bir m sütunundan oluşan bir matris şöyle ifade edilir;

Doğrusal cebirde köşegen matris, (↘) ilkköşegenin dışında kalan girişlerin tümü sıfır ve genellikle kare matris olan bir matrisdir. n sütun ve n satırdan oluşan D = (di,j) matrisi şöyledir:

,
<span class="mw-page-title-main">Kare matris</span>

Doğrusal cebirde, kare matris, satır ve sütun sayıları eşit olan bir matrisdir. n ye n lik bir matris, boyutu n olan bir kare matris olarak bilinir. Aynı boyuta sahip herhangi iki matriste, toplama ve çarpma işlemleri yapılabilir.

<span class="mw-page-title-main">Üçgen matris</span>

Doğrusal cebirde üçgen matris, bir özel kare matris tir. Kare matrisin ilkköşegeninin üstündeki girişlerin tümü sıfır ise alt üçgen matris, benzer şekilde ilkköşegenin altındaki girişlerinin tümü sıfır ise üst üçgen matris olarak adlandırılır. Üçgen matris, ya alt üçgen ya da üst üçgen olabilir. Hem üst hem de alt üçgen matris köşegen matris olarak adlandırılır. Matris denklemlerinden dolayı üçgen matrislerin çözümü kolaydır. Bu matrisler sayısal analizde çok sık kullanılır.

Doğrusal cebirde, satır vektör veya satır matris, 1 × m matrisidir. Örneğin; tek bir m sütunundan oluşan bir matris şöyle ifade edilir;

Doğrusal cebirde veya daha genel ifade ile matematikte matris toplamı, iki matrisin ilgili girişlerinin eklenmesi işlemidir. Matrisler için diğer bir toplama işlemi türü doğrudan toplamdır.

<span class="mw-page-title-main">Birim matris</span> asal köşegendeki sayıları bir, diğer sayıları sıfır olan kare matris

Lineer cebirde, n boyutlu birim matris, ana köşegeni birlerden ve diğer elemanları sıfırlardan oluşan n × n boyutlu bir kare matristir. In ya da sadece I ile gösterilir. Kuantum mekaniği gibi bazı alanlarda, birim matris kalın bir rakamı 1 ile de gösterilir. Nadiren, bazı kitaplarda İngilizce ve Almanca kelimelerin baş harfleri olan U ya da E ile gösterildiği olur.

Lineer cebirde, özdeğer ayrışımı ya da eigen ayrışımı, bir matrisin özdeğerleri ve özvektörleri cinsinden ifade edilen daha basit matrislere ayrıştırılmasıdır. Sadece kare matrisler özdeğerlerine ayrıştırılabilir.

Matematikte, satır azaltma olarak da bilinen Gauss eliminasyonu, lineer denklem sistemlerini çözmek için kullanılan bir algoritmadır. Karşılık gelen katsayı matrisi üzerinde gerçekleştirilen bir dizi işlemden oluşur. Bu yöntem aynı zamanda bir matrisin sırasını, bir kare matrisin determinantını ve ters çevrilebilir bir matrisin tersini hesaplamak için de kullanılabilir. Yöntem adını Carl Friedrich Gauss'tan (1777-1855) almıştır ancak yöntemin bazı özel durumları - kanıt olmadan sunulsa da - Çinli matematikçiler tarafından MS. 179 dolaylarında biliniyordu.

Lineer cebirde bir matris, Gauss eliminasyonunun sonucu olan şekle sahipse eşelon biçimindedir.