İçeriğe atla

Sürüklenim

Shape and flow Form
Drag
Skin
friction
0% 100%
~10% ~80%
~90% ~10%
100% 0%

Akışkanlar dinamiğinde, sürüklenim (aynı zamanda hava sürüklenimi ve sıvı sürüklenimi olarak da bilinen bir sürtünme kuvvetidir) bir sıvı içerisinde hareket eden bir cismin hareket yönüne zıt yönde etki eden kuvvet topluluğuna denir. Bu kuvvet iki sıvı yüzeyi arasında veya bir katı ve bir sıvı yüzeyi arasında olabilir. Diğer durdurucu kuvvetler nazaran (örneğin kuru sürtünme vb. hızdan bağımsızdır) sürüklenim kuvveti hıza bağlıdır. Bir sıvının akış yönü hizasında bulunan katı bir cisme göre, sürüklenim kuvvetleri sıvının hızını her zaman azaltır.

Sürüklenime verilebilir örnekler

Sürüklenime verilebilen örnekler; arabalara, uçaklara, tekne gövdelerine hareket yönüne zıt yönde etki eden aerodinamik ve hidrodinamik kuvvetler, aynı yönde etki eden kuvvet içinde yelkenlere isabet eden rüzgar verilebilir. Yapışma direncine örnek olarak pipet içerisindeki sıvı verilebilir. Pipete bağlı oluşan direnç kuvveti, içindeki sıvının hızını azaltır.

Sürüklenim çeşitleri

Sürüklenim çeşitleri bazı gruplara ayrılmıştır:

  • Parasitik sürüklenim (bir sıvı içerisinde hareket ettirilen cisim)
  • Biçim sürüklenimi
  • Yüzey sürüklenimi
  • Girişim sürüklenimi
  • Kaldırma sürüklenimi
  • Dalga sürüklenimi (aerodinamik)

Parasitik sürüklenim; genellikle aerodinamikte kullanılır çünkü kanatlara etki eden sürüklenim kalkıştan daha azdır. Keskin uçlu cisimlerde direnç çok etkilidir bu sebeple bu cisimlere etki eden sürüklenim parasitik değildir. Sivri cisimlere etki eden; biçim sürüklenimi, yüzey sürüklenimi ve girişim sürüklenimi parasitik direnci elementleri sayılmazlar. Onlar direkt olarak sürüklenim kuvvetinin elemanları sayılırlar.


Kaldırma sürüklenimi yalnızca bir kanat veya yükselen bir obje olduğunda ortaya çıkar, bu sebeple genellikle havacılıkta veya gövde yapımında göz önünde bulundurulur. Dalga sürüklenimi, bir akışkan içerisinde ses hızına yakın bir hızla hareket eden bir cisim olduğunda veya bir akışkan içerisine hareket ederken yüzey dalgaları oluşturan cisimlerden meydana gelir (gemi gibi).


Direnç, akışkanın sahip olduğu özelliklere ve içerisindeki cismin şekline, boyutuna ve hızına bağlı olarak değişir. Direnç formülü:

bu formülde;

Fd = sürüklenim kuvveti p = sıvının yoğunluğu v = akışkan içerisindeki cismin hızı A = sistem alanı Cd = sürüklenim sabiti

Sürüklenim sabiti cismin şekline ve Reynold sayısına bağlıdır

v = sıvının kinematik yoğunluğu (ki aynı zamanda yarı-sıvılığın yoğunluğa bölünmesiyle de elde edilir)

Bir küre için sürüklenim sabiti (Cd), Reynold sayısının (Re) oranına bağlıdır. Laboratuvar ortamında deneyler sonucunda elde edilen grafik aşağıdaki gibidir. Düz çizgi kürenin pürüzsüz bölümü, çizgili bölümse pürüzlü bölümü içindir.


Düşük Reynold sayısında, sürüklenim sabiti asimptotik olarak Reynold sayısının tersine eşit olur yani sürüklenim hızla orantılıdır. Yüksek Reynold sayısında ise, sürüklenim sabiti daha az sabittir. Yüksek hızlarda (veya yüksek Reynold sayısında) sürüklenim, hızın karesi ile orantılı olur.


Sonuçta oluşan gücün bu sürüklenimin üstesinden gelebilmesi için hızın küpüyle orantılı olması gerekir. Sürüklenimin normaldeki formülü; sürüklenim sabitinin yarısının sıvının yoğunluğu, sistem alanı ve hızın karesiyle çarpımı sonucunda elde edilir.

Yüksek hızlarda sürüklenim

Sabit sürüklenim katsayının olduğu durumlarda bir akışkan içerisinde yüksek hızla (yüksek Reynold sayısı Re>~1000) hareket eden cisme etki eden kuvvetin büyüklüğü bulunur. Bu değere aynı zamanda ikinci dereceden sürüklenimde denir. Bu formül Lord Rayleigh’e armağan edilmiştir çünkü A yerine L2 ‘yi kullanan ilk kişidir.

Sistem alanı A genellikle cismin izdüşüm alanıdır, bu alan cismin hareket yönüne diktir. Örnek olarak basit cisimlerde (küre gibi) bu alan kesitsel alana eşittir. Bazen bir cisim için farklı sistem alanları verilebilir, işlem yapabilmek için bu alanlardaki sürüklenim sabitinin verilmesi gerekir.

Kanat örneği kıyaslamaların yapıldığı en basit örnektir çünkü sürüklenim ve kaldırma kuvveti aynı sistem alanına etki etmektedir. Bu durumda sürüklenimin kaldırma kuvvetine oranı, kaldırma sabitine eşittir. Bu sebeple kanatların sistem alanları ön alan yerine direkt olarak kanat alanıdır.

        Pürüzsüz yüzeyli ve bölünme noktaları olmayan küre veya dairesel silindirlerde sürüklenim sabiti, Reynold sayısına bağlı olarak değişir. Reynold sayısı bazen çok yüksek rakamlarada ulaşabilir (107). Yüzeyi pürüzsüz ve bağlantı noktaları olan dairesel disk ve düzlem gibi cisimlerde sabit bir sürüklenim sabitinde Re > 3,500 dür. Bunun haricinde var olan Cd sabiti, akışın yönüne ve hareketine bağlı olarak da değişim gösterir.

Güç

Bir aerodinamik sürüklenimin üzerinden gelebilmek için gerekli olan güç;

formülü ile bulunur. Bu formülde göze çarpan, bir akışkan içerisindeki cismi hareket ettirmek için uygulanan gücün hızın küpüyle orantılı olmasıdır.

Bir otobanda 50 mp/h (80 km/h) ile hareket etmekte olan bir aracın hava sürükleniminin üstesinden gelebilmesi için gereken güç 10 beygir gücü (7.5 kW) dir. Ancak aynı araç bu sefer 100 mp/h (160 km/h) ile hareket ederse 80 beygir gücü (60 kW) güce ihtiyaç duyar. Hızın iki katına çıkması, sürüklenim kuvvetinin dört katına çıkmasına sebep olur.

        Belirli bir mesafede ilk duruma göre 4 kat daha fazla kuvvet uygulanması 4 kat daha fazla iş yapılmasına neden olur. Hızın iki katına çıkarılması sabit mesafedeki işin iki kat daha çabuk yapılmasına neden olur. Güç; belirli bir zaman diliminde yapılan iş olduğu için, yapılan iş 4 katına çıkarken zaman yarıya indiğinde gereken güç 8 katına çıkar. Sürüklenim kuvvetine etki eden dönme sürükleniminin değerinin belirlenmesi önemlidir.

Düşen bir cismin hızı

Yoğunluğu olmayan bir ortamda sıfır ilk hız ile atılan bir cismin hızı hiperbolik teğet (tanh) içerikli bir formül ile bulunabilir:


Fazla bir t zamanı olduğu zaman, hiperbolik teğetin limiti bire yaklaşır. Hızın asimptotik değeri maksimum bir değere yaklaşık ve bu değere terminal hız (uç hız) (Vt) denir.


Ortalama çapı d olan ve yoğunluğu olan patates şeklindeki bir cismin terminal hızı;

ile bulunur.


Suya yakın yoğunlukları olan cisimlerin (yağmur damlası, dolu, canlılar, memeliler, kuşlar, böcekler vs.) Dünya’nın yüzeyinde ve deniz seviyesinde terminal hızları;

ile bulunur.


Bu formülde d (metre) ve Vt (m/s) cinsindedir. Örnek olarak; bir insan vücudu (d = ~0.6m), Vt ~70 m/s, küçük bir kedinin (d = ~0.2m), Vt ~40 m/s, küçük bir kuşun (d = ~0.05m), Vt ~9 m/s’dir.

Çok küçük cisimlerin (polen gibi) terminal hızları düşük Reynold sayılarında Stokes yasası ile belirlenir.


Terminal hız büyük cüsseli cisimlerde, canlılarda, daha yüksektir ve bu nedenle daha ölümcüldür. Yere kendi terminal hızı ile düşen bir farenin, yere kendi terminal hızıyla düşen bir insana kıyasla hayatta kalma ihtimali daha yüksektir. Yere kendi terminal hızıyla düşen bir cırcırböceği büyük ihtimalle zarar bile görmeyecektir. Bu durum, vücudun alanı ve kütlesi de dahil edildiğinde, kare-küp yasası olarak adlandırıl ve küçük canlıların yere düştüğünde neden hasar görmediklerini açıklar.

Çok düşük Reynold sayıları: Stokes sürüklenimi

Grafikteki üç cisim 70° ile atılmışlardır. Siyah cisim hiçbir sürüklenime maruz kalmıyor ve bir parabol çizerek yol alıyor. Mavi cisim Stokes sürüklenimine maruz kalırken, yeşil cisim Newton sürüklenimine maruz kalır.


Akışkan sürüklenimi ve lineer sürüklenim formülleri, bir akışkan içerisinde çok yavaş bir hızla hareket eden cisimler için kullanılır çünkü düşük hızlarda türbülans oluşmaz bu da Reynold sayısının 1den küçük olduğu anlamına gelir.


Tamamen tabakalı akışın oluşabilmesi için bilinen formüllere göre Reynold sayısının 0.1 olması gerekir. Bu şartlar sağlandığında sürüklenim kuvveti hıza orantılı hale gelir ancak zıt yönde etki eder. Akışkan sürüklenimi için kullanılan formül;

b sabiti, sıvının içeriğine ve cismin boyutuna göre değişir. V ise cismin hızıdır.

İlk hızı sıfır olan bir cisim düşmeye başladığında, hızı;

ve asimptotik olarak terminal hıza yaklaşır;

Belirli bir b sabiti için, ağır cisimler daha çabuk düşer.


Küçük küresel cisimlerin, akışkanların içinden yavaş bir hız (düşük Reynold sayısı) ile hareket etmesi durumunu ele alan George Gabriel Stokes, sürüklenim sabitini ifade eden bir formül geliştirdi.

= cismin Stokes yarıçapıdır ve
= sıvının akışkanlık derecesi


Bu değerlerin birleşmesi sonucunda Stokes sürüklenimi ortaya çıkar;



Örneğin, yarıçapı r = 0.5 mikrometre (0.1 nanometre çap) olan küçük bir küre, suyun içerisinde V = 10 nanometre/s ile hareket ediyor. Suyun SI sistemine göre dinamik akışkanlığı 10−3 Pa*s’dir. Sonuç olarak elde edilen sürüklenim kuvveti 0.09 pN dir. Bu sürüklenim kuvveti bir su birikintisi içerisinde yüzen bir bakteriye etki eden sürüklenim kuvvetine eşittir.

Aerodinamikte sürüklenim

Kaldırma-ürünlenmiş sürüklenim

Kaldırma sürüklenimi (ürünlenmiş sürüklenim) kaldırma etkisi olan (kanat gibi) üç boyutlu bir cisimden kaynaklı olarak ortaya çıkar.


Ürünlenmiş sürüklenim iki temel yapıdan meydana gelir; sürüklenimden kaynaklı oluşan girdaplar (girdap direnci) ve etkisi olan akışkanlık sürüklenimi.


Kalkış için gerekli olan ve cismin alt ve üst kısmına etki eden değişken basınç değerleri sonucunda türbülans oluşur. Bu türbülanslar girdap olarak da nitelendirilir ve akışkanın yüzeyinde meydana gelir.



Diğer değişkenler sabitlediği zaman, cismin oluşturduğu kalkış kuvveti artarken kalkış sürüklenimi de artar. Havadaki bir uçak için kaldırma sürüklenimi, hareket yönü ve kanadı arasındaki açıyla bağlantılıdır. Uçuş sırasında kaldırma kuvveti azdır bu sebeple kaldırma sürüklenimi de az olur ancak akışkan basınç sürüklenimi (parasitik bir sürüklenim türüdür) çok yüksektir bu sebeple türbülans meydana gelir.

Parasitik sürüklenim

Katı bir cismin bir akışkan içerisinde hareket ettirilmesi sonucunda parasitik sürüklenim ortaya çıkar. Parasitik sürüklenim birkaç sürüklenimden meydana gelir; bunlar akışkanlık sürüklenimi ve yüzeyin pürüzlülüğünden kaynaklı yüzey sürüklenimidir. Bazen birden fazla cismin birbirlerine yakın olması sonucunda girişken sürüklenim (bazen bir parasitik sürüklenim olduğu da söylenir) meydana gelir.


Ürünlenmiş sürüklenim düşük hızlarda daha fazla oluşur, bunun sebebi düşük hızlarda yükselebilmek için kanat açısı hareket yönüyle olan aralığını arttırır ve sonuç olarak daha fazla sürüklenim oluşturur.


Hız arttığı zaman ise ürünlenmiş sürüklenim azalır ancak uçak daha hızlı hareket ettiği için yüzeyindeki hava daha fazla akar bu sebeple sürtünme artar ve sonuç olarak parasitik sürüklenim yükselir. Sesaltı hızlarda ise dalga sürüklenimi de devreye girer. Oluşan tüm sürüklenim türleri hızla bağlantı içerisindedirler.


Tüm sürüklenimlerin ortalanması sonucunda açığa çıkan eğri bir uçağın sahip olması gereken en ideal hızı verir. Pilotlar genellikle bu hızda gitmeyi tercih edip yakın tasarrufu sağlarlar ve olası bir motor arızasında süzülme mesafesini arttırırlar.

Havacılıkta güç eğrisi

Parasitik sürüklenim, ürünlenmiş sürüklenim ve uçağın hızı arasındaki bağlantı bir grafik ile gösterilebilir;


The power curve: form and induced drag vs. airspeed


Havacılıkta bu grafik genellikle; güç eğrisi olarak adlandırılır. Bunun sebebi grafikte görüldüğü gibi belli bir hızın altında o hızı korumak için daha fazla güç verilmesi germektedir.


Eğrinin altında kalma durumu önemlidir ve genellikle pilotların eğitimlerinde ciddi bir bölüm kapsadığına inanılmaktadır.


Sesüstü hızlarda eğrinin U’ya benzeyen kısmı bir değişken haline gelmemiştir, bu sebeple eğride gösterilmemiştir.

Sesaltı ve sesüstü durumlarda dalga sürüklenimi

Dalga sürüklenimi (aynı zamanda kompresibilite sürüklenimi olarak da bilinir) katı bir cismin sıkıştırılabilir bir akışkan içerisinde bir hız ile hareket ettirilmesi sonucunda oluşur.


Aerodinamikteki dalga sürükleniminin bazı bileşenleri vardır ve bu bileşenler uçuşun hız sistemine göre değişiklik gösterir.


Qualitative variation in Cd factor with Mach number for aircraft


Bir uçak sesaltı hızda (ses hızını geçme anındaki hız) hareket ederken (Mach sayısı 0.8’den büyük, 1.4’ten küçük) üzerine etki eden dalga sürüklenimi şok dalgaları yüzünden meydana gelir ve bu dalgalar uçağın ses hızını geçmiş olan bölümlerinden kaynaklanır (Mach sayısı 1.0’dan büyük).


Sesüstü uçuşun oluşabilmesi için havadaki cismin ses hızından daha hızlı gitmesi gerekir, uçağın yüzeyine temas eden hava hız arttıkça ivmelenir bu da Mach sayısının 1.0’dan büyük olması demektir. Tamamen bir sesüstü uçuşun olabilmesi için Mach sayısının 1.0’ın üzerinde olması gerekir.


Sesaltı hızlarda hareket eden uçaklarda dalga sürüklenimine maruz kalır bu sürüklenimin oluşma sebebi sürtünme kaynaklıdır. Sesaltı hızlarda ortaya çıkan dalga sürüklenimine genellikle sesaltı sıkıştırılabilme sürüklenimi denir. Cismin hızı 1.0 Mach’ı aşarken sesaltı sıkıştırılabilme sürüklenimi de artar ve birçok çeşitli sürüklenimleri yok eder.


Sesüstü hızlarda (Mach 1.0’dan büyük) oluşan dalga sürüklenimi cisim üzerindeki şok dalgalarından meydana gelir, bu dalgalar genellikle cismin ön ve arka kısımlarında oluşur. Çok yüksek sesüstü hızlarda veya çok yüksek açılarda manevra yapan cisimlerde bağlantısız şok dalgaları ya da yay dalgaları meydana gelir.


İlk şok dalgasının arkasında oluşan sesaltı akış düşük sesüstü hızlarda meydana gelebilir ve sonuç olarak uçağın herhangi noktalarında daha küçük şok dalgaları oluşturur.


Sesüstü akışlarda oluşan dalga sürüklenimi iki bileşene ayrılır: sesüstü kaldırmaya bağlı dalga sürüklenimi, sesüstü hacme bağlı dalga sürüklenimi.


Bir cisme etki eden minimum dalga sürükleniminin kapalı bir fonksiyon denklemi ile bulan kişiler Sears ve Haack’tır, bu formül ayrıca Sears-Haack Düzenlemesi olarak bilinir. Hacme bağlı denklemde Von Karman Ogive tarafından bulunmuştur.

d’Alembert paradoksu

d’Alembert 1752’de potansiyel akışı kanıtladı ki bu teori 18. yüzyılda tartışılan yarı-akışkan özelliksiz akışın matematiksel temellerini oluşturdu. Bu işlemle sonucunda sıfır direnç elde ediliyordu ancak deneyler bu sonuçla çelişiyordu bu sebeple bu durum d’Alembert paradoksu olarak adlandırılır.


Yarı-akışkan direncin açıklanması 19.yüzyılda Navier-Stokes denklemleriyle oldu ve bu denklemler Saint-Venant, Navier ve Stokes tarafından geliştirildi. Stokes bu direnci çok düşük Reynold sayısı kullanarak kanıtladı bu sebeple Stokes yasası adını verdi.


Yüksek Reynold sayılarının limitlerinde uygulanan Navier-Stokes denklemleri yarı-akışkan özelliksiz Euler denklemlerine ulaşıyordu ki bu denklemde potansiyel akış d’Alembert’e göre uygulanıyordu. Sonuç olarak yüksek Reynold sayılarında direncin olduğu kanıtlandı. Yarı-akışkan özelliksiz akış teorilerinin kullanıldığı Euler denklemleri potansiyel akışı bulmakta çok gerçekçi değerler bulamadı.

Prandtl’in 1904 yılında bahsettiği sınır tabakaları teorisi, yüksek Reynold sayılarında oluşan sürüklenimi açıklamıştır. Sınır tabakası cismin yüzeyindeki az ama önemli olan akışkanlık özelliğini ifade eder.

Kaynakça

  • French, A. P. (1970). Newtonian Mechanics (The M.I. T. Introductory Physics Series) (1st ed.). W. W. Norton & Company Inc., New York.
  • Serway, Raymond A.; Jewett, John W. (2004). Physics for Scientists and Engineers (6th ed.). Brooks/Cole.
  • Tipler, Paul (2004). Physics for Scientists and Engineers: Mechanics, Oscillations and Waves, Thermodynamics (5th ed.). W. H. Freeman.
  • Huntley, H. E. (1967). Dimensional Analysis. Dover. LOC
  • Batchelor, George (2000). An introduction to fluid dynamics. Cambridge Mathematical Library (2nd ed.). Cambridge University Press.
  • Clancy, L.J. (1975), Aerodynamics, Pitman Publishing Limited, London.

İlgili Araştırma Makaleleri

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

Yoğunluk veya özkütle; fizikte ve kimyada, belirli sıcaklık ve basınç altında birim hacimdeki madde miktarıdır. veya harfi ile sembolize edilir. Yoğunluk, maddenin karakteristik özelliği olmasına rağmen sadece yoğunluğu bilinen bir maddenin hangi madde olduğu anlaşılamayabilir. Bir maddenin hangi madde olduğunun anlaşılabilmesi için birden fazla ayırt edici özelliğinin incelenmesi gerekir. Sabit basınç ve sıcaklık altında; kütlesi artan bir maddenin hacmi de artar, dolayısıyla hacimle kütle doğru orantılı olduğu için yoğunluk değişmez. İki tür yoğunluk vardır. Birincisi mutlak yoğunluktur ki, pratikte mutlak kelimesi kullanılmaz, sadece yoğunluk denir. İkincisi ise bağıl yoğunluktur. Sembolü harfi, birimi g/cm³ ve m kütle, v hacim olmak üzere formülü;

<span class="mw-page-title-main">Newton'un hareket yasaları</span> Bilimsel Yasalar

Newton'un hareket yasaları, bir cisim üzerine etki eden kuvvetler ve cismin yaptığı hareket arasındaki ilişkileri ortaya koyan üç yasadır. İlk kez Isaac Newton tarafından 5 Temmuz 1687 tarihinde yayımlanan Philosophiae Naturalis Principia Mathematica adlı çalışmada ortaya konmuştur. Bu yasalar klasik mekaniğin temelini oluşturmuş, bizzat Newton tarafından fiziksel nesnelerin hareketleri ile ilgili birçok olayın açıklanmasında kullanılmıştır. Newton, çalışmasının üçüncü bölümünde, bu hareket yasalarını ve yine kendi bulduğu evrensel kütleçekim yasasını kullanarak Kepler'in gezegensel hareket yasalarının elde edilebileceğini göstermiştir.

1. Yasa
Eylemsiz referans sistemi adı verilen öyle referans sistemleri seçebiliriz ki, bu sistemde bulunan bir parçacık üzerine bir net kuvvet etki etmiyorsa cismin hızında herhangi bir değişiklik olmaz. Bu yasa genellikle şu şekilde basitleştirilir: “Bir cisim üzerine dengelenmemiş bir dış kuvvet etki etmedikçe, cisim hareket durumunu korur.”
2. Yasa
Eylemsiz bir referans sisteminde, bir parçacık üzerindeki net kuvvet onun çizgisel momentumunun zaman ile değişimi ile orantılıdır:
<span class="mw-page-title-main">Açısal momentum</span> Fiziksel nicelik

Açısal momentum, herhangi bir cismin dönüş hareketine devam etme isteğinin bir göstergesidir ve bu nicelik cismin kütlesine, şekline ve hızına bağlıdır. Açısal momentum bir vektör birimidir ve cismin belirli eksenler üzerinde sahip olduğu dönüş eylemsizliği ile dönüş hızını ifade eder.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Kütle merkezi</span>

Fizikte, uzaydaki ağırlığın dağılımının ağırlık merkezi, birbirlerine göre olan ağırlıkların toplamlarının sıfır olduğu noktadır. Ağırlık dağılımı, ağırlık merkezi etrafında dengelenir ve dağılan ağırlığın kütle pozisyon koordinatlarının ortalaması onun koordinatlarını tanımlar. Ağırlık merkezine göre formüle edildiği zaman mekanikte hesaplamalar basitleşir.

<span class="mw-page-title-main">Torricelli kanunu</span>

Torricelli yasası, bir kaptaki sıvının çıkış hızının, sıvı yüksekliğiyle ilişkisini açıklayan, akışkanlar dinamiği yasasıdır. Bu yasa akmaz olmayan sıvılar için geçerlidir.

<span class="mw-page-title-main">Hareket (fizik)</span>

Hareket ya da devinim, bir cismin sabit bir noktaya göre yerinin zamana karşı değişimidir. Hareketle ilgilenen bilim sahaları, mekanik ve kinematik olarak sınıflandırılabilir. İlkinde kuvvet ve kütle üzerindeki etkisi incelenirken, ikincisinde, kütlenin konumu, hızı gibi nitelikler incelenir.

<span class="mw-page-title-main">Hidrostatik</span>

Akışkan statiği ya da hidrostatik, hareketsiz akışkanlar üzerinde çalışmalar yapan akışkan mekaniğinin dalı. Hangi akışkanların durağan dengede hareketsiz kaldığıyla ilgili yapılan çalışmaları kabul eder ve akışkan dinamiğiyle karşılaştırıldığında hareket halindeki akışkanları inceler.

Fizik ve mühendislikte, kütle akış hızı, bir maddenin geçtiği belirli bir yüzeyden birim zamana geçen kütle miktarıdır. SI'daki birimi, kilogram bölü saniyedir. Yaygın kullanılan sembolü olmasına rağmen bazen μ kullanılır.

Aerodinamik bölümünde bahsedilen aerodinamik sürüklenim, bir akışkan yönünde hareket halinde olan herhangi bir katı cisme etki eden akışkan sürüklenim kuvvetine denir. Cisim baz alındığında bu kuvvet cismin yüzeyine etki eden basınç dağılımlarından(Dp) ve cisme etki eden kayma kuvvetlerinden(akışkanlığın sonucu [Df]) meydana gelir. Akışın özelliklerine göre hesaplama yapıldığında sürüklenim kuvveti 3 temel birime bağlıdır : şok dalgaları, girdaplar ve akışkanlık.

Akışkanlar dinamiğinde, bir sıvı tarafından çevrelenmiş ve hareket halinde olan bir cisim tarafından hissedilen sürüklenim kuvvetini bulmak için sürüklenim denklemi kullanılır. Bu formül belli koşullar altında daha tutarlı sonuçlar verir:

<span class="mw-page-title-main">Sürekli ortamlar mekaniği</span>

Sürekli ortamlar mekaniği, ayrı parçacıklar yerine tam bir kütle olarak modellenen maddelerin mekanik davranışları ve kinematiğin analizi ile ilgilenen mekaniğin bir dalıdır. Fransız matematikçi Augustin-Louis Cauchy, 19. yüzyılda bu modelleri formüle dökmüştür, fakat bu alandaki araştırmalar günümüzde devam etmektedir. 

Stokes Akışı George Gabriel Stokes tarafından geliştirilmiştir. Aynı zamanda sürünme akışı olarak da adlandırılır. Bu akışlar, advektif Atalet kuvvetlerinin viskoz kuvvetlere göre küçük olduğu akışlardır. Adveksiyon, herhangi bir dinamik davranışta korunan değerlerin parçacıklar veya sistemler arasındaki kütlesel hareket ile taşınımıdır. Atalet kuvvetlerinin küçük olması ise hareketlerin düşük hızlı olduğunu ifade eder. Bunlara bağlı olarak Stokes Akışları Reynolds Sayısının küçük olduğu akışlardaki basitleştirilmiş modeldir. Bu tipik durumun olduğu akışlarda hız oldukça yavaştır ve viskozite çok yüksektir veya karakteristik uzunlukların oranı küçüktür. Sürünme akışı ilk olarak göreceli hareketin küçük olduğu veya statik olan mekanik parçaların yağlanmasında incelenmiştir. Ayrıca bu akış doğada mikroorganizmaların akışkanlar içindeki hareketlerinde gözlenir. Teknolojide ise MEMS’de ve polimerlerde bu akış görülebilir.

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

<span class="mw-page-title-main">Terminal hızı</span>

Terminal hızı, bir nesnenin bir akışkanın içinde düşerken ulaşabileceği maksimum hızdır. Sürükleme kuvveti (Fd) ve kaldırma kuvvetinin toplamı, nesneye etki eden aşağı doğru yerçekimi kuvvetine (Fg) eşit olduğunda bu hıza ulaşılmaktadır. Cisim üzerindeki net kuvvet sıfır olduğundan, cismin ivmesi sıfırdır.

<span class="mw-page-title-main">Keulegan-Carpenter sayısı</span>

Akışkanlar dinamiği alanında, Keulegan–Carpenter sayısı, aynı zamanda periyot sayısı olarak da bilinir, salınımlı bir akışkan akışı içinde bulunan künt cisimler üzerindeki sürükleme kuvvetinin atalet kuvvetlerine göre göreli önemini belirten bir boyutsuz niceliktir. Aynı şekilde, durgun bir akışkan içinde salınan cisimler için de geçerlidir. Küçük Keulegan–Carpenter sayılarında atalet kuvvetleri baskınken, büyük sayılarda türbülans nedeniyle sürükleme kuvvetleri önem kazanır.

<span class="mw-page-title-main">Sürükleme katsayısı</span> bir nesnenin hava veya su gibi sıvı bir ortam içinde sürtünmesi ya da direnç göstermesini nicelendirmek için kullanılan boyutsuz miktar

Akışkanlar dinamiği alanında, sürükleme katsayısı, bir nesnenin hava veya su gibi bir akışkan ortamında maruz kaldığı sürükleme veya direnç miktarını belirlemek için kullanılan bir boyutsuz niceliktir. Sürükleme denkleminde kullanılır ve daha düşük bir sürükleme katsayısı, nesnenin daha az aerodinamik veya hidrodinamik sürüklemeye sahip olacağını ifade eder. Sürükleme katsayısı her zaman belirli bir yüzey alanına bağlı olarak değerlendirilir.

<span class="mw-page-title-main">Stokes sayısı</span>

Stokes sayısı (Stk), George Gabriel Stokes'un adını taşıyan ve parçacıkların bir akışkan akışı içerisinde süspansiyonda gösterdiği davranışı karakterize eden bir boyutsuz sayıdır. Stokes sayısı, bir parçacığın karakteristik zamanı ile akışın veya bir engelin karakteristik zamanı arasındaki oran olarak şu şekilde tanımlanır: