İçeriğe atla

Süperformül

Süperformül, süperelips formülünün bir genelleştirilmesidir ve Johan Gielis tarafından 2000 yılında öne sürülmüştür. Gielis, bu formülün doğadaki birçok karmaşık şeklin ve eğrinin tanımlanmasında kullanılabileceğini söylemiştir. Gielis, süperformül ile oluşturulan bütün desenlerin patentine sahiptir.

Kutupsal koordinat sisteminde, yarıçap ve açı olmak üzere süperformül:

Formül, süperelips formülünün genelleştirilmesiyle elde edilmişti, ismi Danimarkalı bir matematikçi olan Piet Hein tarafından konulmuştu.

Yüksek uzantı boyutları

Formülü 3,4 veya n boyutlarında uzatmak mümkündür. Örnek olarak, 3B parametrik yüzey: r1 ve r2 formüllerini ikiye katlayarak elde edilir. Koordinatlar ilişkilerle ifade edilir:

(enlem) arasında −π/2 ve π/2, θ (boylam) arasında −π ve π değişir.

Genelleme

ile y'yi ve ile z'yi değiştirerek genelleştirilebilir.[1]

Bu formül, mantıken asimetrik ve iç içe geçmiş yapılar oluşturulmasını sağlar. Aşağıdaki örnekler a, b, ve 1:

Arsalar

Kaynakça

  1. ^ Stöhr, Uwe (2004), SuperformulaU (PDF), 16 Haziran 2016 tarihinde kaynağından (PDF) arşivlendi, erişim tarihi: 5 Ekim 2016 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Pi sayısı</span> dairenin çevresinin çapına oranını ifade eden irrasyonel matematik sabiti

Pi sayısı , bir dairenin çevresinin çapına bölümü ile elde edilen irrasyonel matematik sabitidir. İsmini, Yunanca περίμετρον (çevre) sözcüğünün ilk harfi olan π harfinden alır. Pi sayısı, Arşimet sabiti ve Ludolph sayısı olarak da bilinir. Aynı zamanda ismini yunancada pie anlamına gelen πίτα' dan alır.

<span class="mw-page-title-main">Elektrik alanı</span>

Elektriksel alan, kıvıl alan, elektrik alan veya elektrik alanı, elektriksel yükü veya manyetik alanı çevreleyen uzayın bir özelliği olup, içerisinde bulunan yüklü nesnelere elektriksel güç aracılığı ile etki eder. Kavram fiziğe Michael Faraday tarafından kazandırılmıştır.

<span class="mw-page-title-main">Sinüs (matematik)</span>

Matematikte sinüs, trigonometrik bir fonksiyon. Sin kısaltmasıyla ifade edilir.

<span class="mw-page-title-main">Radyan</span>

Radyan, bir dairede yarıçap uzunluğundaki yay parçasını gören merkez açıya eşit açı ölçme birimidir. 1 radyan 180/π ya da yaklaşık 57,2958 derecedir (57°17′45″).

<span class="mw-page-title-main">Kutupsal koordinat sistemi</span>

Matematikte kutupsal koordinat sistemi veya polar koordinat sistemi, noktaların birer açı ve Kartezyen koordinat sistemindeki orijinin eşdeğeri olup "kutup" olarak bilinen bir merkez noktaya olan uzaklıklar ile tanımlandığı, iki boyutlu bir koordinat sistemidir. Kutupsal koordinat sistemi, matematik, fizik, mühendislik, denizcilik, robot teknolojisi gibi birçok alanda kullanılır. Bu sistem, iki nokta arasındaki ilişkinin açı ve uzaklık ile daha kolay ifade edilebildiği durumlar için özellikle kullanışlıdır. Kartezyen koordinat sisteminde, böyle bir ilişki ancak trigonometrik formüller ile bulunabilir. Kutupsal denklemler, çoğu eğri tipi için en kolay, bazıları içinse yegâne tanımlama yöntemidir.

<span class="mw-page-title-main">Tork</span> bir kuvvetin nesnenin ekseninde, dayanak noktasında ya da çevresinde dönme eğilimi

Tork, kuvvet momenti ya da dönme momenti, bir cismin bir eksen etrafındaki dönme, bükülme veya burulma eğilimini dönme ekseni merkezine indirgeyerek ölçen fiziksel büyüklüktür. Torkun büyüklüğü moment kolu uzunluğuna, uygulanan kuvvete ve moment kolu ile kuvvet vektörü arasındaki açıya bağlıdır.

Olasılık ya da ihtimaliyet, bir şeyin olmasının veya olmamasının matematiksel değeri veya olabilirlik yüzdesi, değeridir. Olasılık kuramı istatistik, matematik, bilim ve felsefe alanlarında mümkün olayların olabilirliği ve karmaşık sistemlerin altında yatan mekanik işlevler hakkında sonuçlar ortaya atmak için çok geniş bir şekilde kullanılmaktadır.

<span class="mw-page-title-main">Gül (matematik)</span>

Matematikte gül veya rodonea, kutupsal koordinat sisteminde çizilmiş bir sinüs ya da kosinüs eğrisine denir. Gül eğrisi, aşağıdaki kutupsal denklemle ifade edilir:

<span class="mw-page-title-main">Kardiyoit</span>

Matematikte kardiyoit veya yürek eğrisi, sabit bir çember üzerinde yuvarlanmakta olan aynı yarıçaplı ikinci bir çember üzerindeki herhangi bir noktanın izlediği eğridir. İsmi Yunanca kardia (kalp) ve eidos (şekil) kelimelerinin birleşiminden oluşur. Kalp (♥) şeklini anımsattığı için bu ismi almıştır. Kardiyoit ismini ilk kullanan, 18. yüzyıl İtalyan matematikçisi Johann Castillon olmuştur.

<span class="mw-page-title-main">Logaritmik spiral</span>

Logaritmik spiral, doğada sık rastlanan bir spiral çeşididir. İlk olarak 17. yüzyılda René Descartes ve Jakob Bernoulli tarafından tanımlanmış ve incelenmiştir. Bernoulli bu eğriye, kendine özgü matematiksel özelliklerinden dolayı, spira mirabilis adını vermiş ve mezar taşına bir logaritmik spiral oyulmasını vasiyet etmiştir.

<span class="mw-page-title-main">Pion</span>

Parçacık fiziğinde pion π0, π+ ve π'den oluşan üç atom atomaltı parçacığın ortak adıdır. Pionlar en hafif mezonlardır ve güçlü nükleer kuvvetin düşük enerjili durumlarını açıklamakta önemli bir rolü vardır.

<span class="mw-page-title-main">Çizgi integrali</span>

Matematikte bir çizgi integrali, integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır.

<span class="mw-page-title-main">Sarmal</span>

Sarmal, burgu şekilli, üç boyutlu bir şekildir. Sarmal şekilli gündelik nesnelere örnek olarak silindirik yay, vida ve minare merdiveni gösterilebilir. Sarmallar biyolojide de yer alır, DNA molekülü birbirine sarılmış iki sarmaldan oluşur, çoğu proteinde de alfa sarmal olarak adlandırılan sarmal yapılar bulunur. Sıfat hali için sarmal kullanılır.

<span class="mw-page-title-main">Birim çember</span> trigonometri ve mampo da çok işlemi olmuş bir çemberdi ve çok kolay bir yönetimi vardır birim çemberi matematiğin temelini olustur bu yüzden çok önemli bir cemberdir

Birim çember Matematikte, yarıçapı bir birim olan çembere birim çember denir. Çoğunlukla, özellikle trigonometride, Öklid düzlemine göre Kartezyen koordinat sisteminde, merkezi orijin üzerinde (0,0) olan ve yarıçapı bir birim olan çemberdir. n birim çember sıklıkla S1; olarak ifade edilir. Genellikle daha büyük boyutları ise birim küredir. (x, y) birim çember üzerinde bir nokta olduğunda, |x| ve |y|, dik olan ve hipotenüsü bir olan üçgenin diğer kenar uzunluklarıdır. Bu nedenle, Pisagor teoremine göre, x ve y bu denklemi karşılamaktadır.

<span class="mw-page-title-main">Eliptik eğri kriptografisi</span>

Eliptik Eğri Kriptolojisi, sonlu cisimler üzerindeki eliptik eğrilerin cebirsel topolojisine dayanan bir açık anahtar şifrelemesidir. Eliptik Eğri Kriptolojisi, diğer şifrelemeler göre daha küçük anahtar boyuna ihtiyaç duyar.

Bethe formülü hızlı yüklü parçacıkların malzeme ile enerji kaybını açıklar. Yüksek hızlı yüklü parçacıklar maddenin içinde hareket ederken, malzemenin atomlarındaki elektronlarla etkileşirler, bu etkileşme atomu uyarır ya da iyonlaştırır. Bu durum hareket eden parçacığın enerji kaybetmesine yol açar.

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

Ondalık dereceler (OD) enlem ve boylam coğrafi koordinatlarını ondalık kesirler olarak ifade eder ve birçok coğrafi bilgi sisteminde (CBS), OpenStreetMap gibi web haritalama uygulamalarında ve GPS cihazlarında kullanılır. Ondalık dereceler derece, dakika ve saniye (DDS) kullanımına bir alternatiftir. Enlem ve boylamda olduğu gibi, değerler sırasıyla ± 90 ° ve ± 180 ° ile sınırlanır.

<span class="mw-page-title-main">Non-uniform rational B-spline</span>

Düzgün olmayan rasyonel temelli eğri, eğrileri ve yüzeyleri oluşturmak ve temsil etmek için bilgisayar grafiklerinde yaygın olarak kullanılan matematiksel bir modeldir. Hem analitik hem de modellenmiş şekilleri işlemek için büyük esneklik ve hassasiyet sunar. NURBS yaygın olarak bilgisayar destekli tasarım, imalat ve mühendislikte kullanılır ve IGES, STEP, ACIS ve PHIGS gibi çok sayıda endüstri çapında standardın parçasıdır. NURBS araçları ayrıca çeşitli 3B modelleme ve animasyon yazılım paketlerinde de bulunur. NURBS yüzeyleri, üç boyutlu uzayda bir yüzeye eşlenen iki parametrenin işlevleridir. Yüzeyin şekli kontrol noktaları ile belirlenir. NURBS yüzeyleri, kompakt bir biçimde basit geometrik şekilleri temsil edebilir. T-spline'lar ve alt bölme yüzeyleri, NURBS yüzeylerine kıyasla kontrol noktalarının sayısını iki kat azalttığı için karmaşık organik şekiller için daha uygundur. NURBS eğrilerini ve yüzeylerini düzenlemek oldukça sezgisel ve öngörülebilirdir. Kontrol noktaları her zaman doğrudan eğriye / yüzeye bağlanır veya bir lastik bantla bağlanmış gibi davranır. Kullanıcı arayüzünün türüne bağlı olarak, düzenleme, Bézier eğrileri için en açık ve yaygın olan bir elemanın kontrol noktaları aracılığıyla veya spline modelleme veya hiyerarşik düzenleme gibi daha yüksek seviyeli araçlar aracılığıyla gerçekleştirilebilir.

<span class="mw-page-title-main">Holditch teoremi</span>

Düzlem geometride, Holditch teoremi, sabit uzunlukta bir kirişin dışbükey kapalı bir eğri içinde dönmesine izin verilirse, kiriş üzerindeki bir noktanın yerinin bir uçtan uzaklığı ve diğerinden uzaklığı kapalı alanı orijinal eğrinin oluşturduğu alandan daha az olan kapalı bir eğri olduğunu belirtir. Teorem 1858'de İngiliz matematikçi Rev. Hamnet Holditch tarafından yayımlanmıştır. Holditch tarafından bahsedilmese de, teoremin kanıtı, kirişin, izlenen noktanın yerinin basit bir kapalı eğri olacak kadar kısa olduğu varsayımını gerektirir.