İçeriğe atla

Süperfaktöriyel

Süperfaktöriyel, sembolü ‼ olan özel tanımlı bir matematiksel fonksiyondur. Matematikte, süperfaktöriyelin birden fazla tanımı vardır.

Neil Sloane ve Simon Plouffe'un tanımı

Neil Sloane ve Simon Plouffe tarafından The Encyclopedia of Integer Sequences (Academic Press, 1995)’de verilen tanıma göre, bu sayıdan küçük veya ona eşit tam sayıların faktöriyellerinin çarpımı olmak üzere bir doğal sayının üst faktöriyeli olarak tanımlanır:

Bu şekilde tanımlanan üst faktöriyeller, OEIS 16 Temmuz 2011 tarihinde Wayback Machine sitesinde arşivlendi.'in A000178 dizisini temsil eder.

Eşdeğer olarak, süper faktöriyel Vandermonde matrisinin determinantı olan aşağıdaki formülle de verilir:

Bu süper faktöriyeller dizisi () aşağıdaki gibi başlar:

1, 1, 2, 12, 288, 34560, 24883200, 125411328000, ...

Karmaşık sayılar için Neil Sloane ve Simon Plouffe'un tanımına göre üst faktöriyelin genelleştirilmesi, Barnes G fonksiyonu ile temsil edilir, çünkü herhangi bir tam sayı için,

'dir.

Clifford A. Pickover'ın tanımı

Tetrasyon işlemine dayanan bir başka süper faktöriyel tanımı, 1995 yılında Clifford A. Pickover tarafından Keys to Infinity adlı kitabında verilen tanımdır:

veya

burada notasyonu tetrasyon operatörünü gösterir veya Knuth yukarı ok gösterimini kullanarak aşağıdaki gibi ifade edilebilir,

Bu süper faktöriyeller dizisi şöyle başlar:

dikkat edilmesi gereken yer:

'dir.

Daha fazla detay

  • 6‼=3!×2!=(1×2×3)×(1×2)=1²×2²×3=1×4×3=12'dir. Bu denkleme göre asal sayıların süperfaktöriyeli alındığında, şu şekilde bir denklem oluşur:
  • P‼=P!×1!=P!×1=P! fakat 6‼, 1! ve 6!'in çarpımı olarak bulunmaz. Çünkü burada 1 ve kendisinden başka çarpanlarının faktöriyelinin çarpımı kuralı vardır.
  • 12 için 1 ve kendisi dışındaki çarpanları 2, 3, 4 ve 6'dır. Bu nedenle şeklinde bulunabilir.
  • 18 için 2, 3, 6, 9 olduğundan Karekök (2 Faktöriyel çarpı 6 Faktöriyel) çarpı (3 Faktöriyel çarpı 9 faktöriyel) yani şeklinde bulunur.
  • 28 için Karekök (2 Faktöriyel çarpı 7 Faktöriyel) çarpı (4 Faktöriyel çarpı 14 Faktöriyel) yani şeklinde bulunur.
  • 9‼ ise şeklinde bulunur. Çünkü 9, 3'ün karesidir (3×3=9)

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Vektör</span> büyüklüğü (veya uzunluğu) ve yönü olan geometrik nesne

Matematik, fizik ve mühendislikte, Öklid vektörü veya kısaca vektör sayısal büyüklüğü ve yönü olan geometrik bir objedir. Vektör, genellikle bir doğru parçası ile özdeşleştirilir. Bir başlangıç noktası A ile bir uç noktası B'yi birleştiren bir ok şeklinde görselleştirilir ve ile belirtilir.

<span class="mw-page-title-main">Karekök</span>

Matematikte negatif olmayan bir gerçel sayısının temel karekök bulma işlemi şeklinde gösterilir ve karesi (bir sayının kendisiyle çarpılmasının sonucu) olan negatif olmayan bir gerçek sayıyı ifade eder.

Faktöriyel, matematikte, sağına ünlem işareti konulmuş sayıya verilen isim, daha genel olan Gama fonksiyonunun tam sayılarla sınırlanmış özel bir durumudur. Bu sınırlamanın nedeni gerçek veya reel sayılarda bu hesabın imkansız oluşudur. 1'den başlayarak belirli bir sayma sayısına kadar olan sayıların çarpımına o sayının faktöriyeli denir. Basit bir şekilde faktöriyel, n tane ayrık elemanın kaç farklı şekilde sıralanabileceğidir.

<span class="mw-page-title-main">Gama fonksiyonu</span>

Gama fonksiyonu, matematikte faktöriyel fonksiyonunun karmaşık sayılar ve tam sayı olmayan reel sayılar için genellenmesi olan bir fonksiyondur. Г simgesiyle gösterilir.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

Aşağıdaki liste üstel fonksiyonların integrallerini içermektedir. İntegral fonksiyonlarının tüm bir listesi için lütfen İntegral tablosu sayfasına bakınız.

where
<span class="mw-page-title-main">Negatif binom dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında negatif binom dağılım bir ayrık olasılık dağılım tipi olup Pascal dağılımı ve Polya dağılımı bu dağılımın özel halleridir.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

Büyük sayılar, gündelik yaşamda normalde kullanılmayan büyük sayıları ifade eder. Terim genellikle büyük pozitif tam sayıları veya daha genel anlamda büyük pozitif reel sayıları belirtir. Fakat, diğer anlamlar için de kullanılabilir.

Knuth yukarı ok gösterimi, matematikte, çok büyük tam sayıların gösterim yöntemidir. 1976'da Donald Knuth tarafından geliştirildi. Ackermann işlevi ve özel hiperişlem serisi ile oldukça bağlantılıdır. Çarpmanın, tekrarlı hiperişlem olarak tekrarlı toplama ve üs alma gibi görülebilmesi fikrine dayanır. Bu durumu devam ettirme tekrarlı üssü (tetrasyonu) ve çoğunlukla Knuth ok gösterimi kullanılarak ifade edilen aşırı seri üretiminin geri kalanını meydana getirir.

Graham sayısı, adını Ronald Graham'dan alan, Ramsey teorisindeki problemlerin çözümü için üst sınır getiren büyük bir sayıdır.

<span class="mw-page-title-main">Tetrasyon</span>

Matematikte, tetrasyon, üslü sayıdan sonra gelen ilk aşırı işlecin tekrarlı üssüdür. Tetrasyonun İngilizce karşılığı olan tetration kelimesi ilk kez matematikçi Reuben Louis Goodstein tarafından, tetra- (dört) ve iteration (tekrar)dan türetilerek kullanılmaya başlandı. Tetrasyon çok büyük sayıların gösterimi için kullanıldı. Fakat birkaç pratik uygulaması vardır. Bu yüzden sadece saf matematik incelenir. Burada aşırı işlecin ilk dört örneğin gösteriliyor. Tekrasyon dördüncüsüdür:

  1. toplama
    Normal bilinen toplama işlemi.
  2. çarpma
    genellikle temel işlemlerden birini ifade eder. Fakat doğal sayılar gibi özel durumlar için kendine n kere eklenen a olabilir.
  3. üs alma
    a nın kendisi ile n kere çarpılması.
  4. tetrasyon
    a 'nın kendisiyle n kere üssünün alınması.

Hiperişlem, matematik'te aritmetik işlemlerin sonsuz dizisidir. Ardılın birli işlemi, ardından toplama, çarpma ve üs almanın iki işlemiyle devam eden ve ardından ikili işlemlerin ötesine geçerek serilerle ilerleyen bir işlemdir. Üstelden sonraki işlemler için bu dizinin n. elemanı Reuben Goodstein tarafından adlandırıldı. n Yunan önekinden sonra -syon son eki kullanılarak elde edilir ve Knuth yukarı ok gösterimindeki n-2 okları kullanılarak yazılabilir. Her hiperişlem, önceki terimlerin yinelemesi olarak tanımlanır. Ackermann işlevi, Knuth yukarı ok gösterimini kullanarak şöyle yinelenebilir:

<span class="mw-page-title-main">Hilbert uzayı</span>

Matematikte Hilbert uzayı, sonlu boyutlu Öklit uzayında uygulanabilen lineer cebir yöntemlerinin genelleştirilebildiği ve sonsuz boyutlu da olabilen bir vektör uzayıdır. Daha kesin olarak, bir Hilbert uzayı, uzayın tam metrik uzay olmasını sağlayan bir uzaklık fonksiyonu üreten bir iç çarpımla donatılmış bir vektör uzayıdır. Bir Hilbert uzayı, bir Banach uzayının özel bir durumudur. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Kuantum mekaniğiyle uyumludur. Adını David Hilbert'ten almaktadır.

<span class="mw-page-title-main">Öklid uzayı</span> Öklid geometrisinin yüksek boyutlu vektör uzaylarına genelleştirilmesi

Matematikte Öklid uzayı, Öklid geometrisinin üç boyutlu uzayıdır ve bu kavramlar, çok boyutlu olarak genelleştirilir. “Öklid” terimi bu uzayları, Öklid geometrisi olmayan eğimli uzaydan ve Einstein'nın genel görelilik kuramından ayırt eder. Bu adı Yunan matematikçi Öklid'den dolayı almıştır.

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

<span class="mw-page-title-main">Primoriyel</span>

Primoriyel, matematikte ve bilhassa sayı teorisinde doğal sayılardan doğal sayılara tanımlanmış faktöriyele benzer şekilde art arda pozitif tam sayıları çarpacağı yerde sadece asal sayıları çarpar.

<span class="mw-page-title-main">Theodorus sarmalı</span> Arşimet spiralinin ayrık analog versiyonu

Geometride, Theodorus Sarmalı, uç uca yerleştirilmiş dik üçgenlerden oluşan bir spiraldir. Adını, Cyreneli Theodorus'tan almıştır.