İçeriğe atla

Sudbury Nötrino Gözlemevi

Sudbury Nötrino Gözlemevi (SNG), Kanada’nın Ontario vilayetinde Sudbury şehrindeki Creighton Madeni’nde bulunan, yerin 2100m altındaki bir nötrino gözlemevidir. Detektör, güneş nötrinolarını geniş bir ağır su haznesiyle olan etkileşimleriyle tespit etmek için tasarlanmış.

Detektör Mayıs 1999'da etkinleştirildi ve 28 Kasım 2006'da devre dışı bıraklıdı. SNG işbirliği, veri analiz edilirken birkaç yıl daha çalıştı.

Deneyin direktörü Arthur B. McDonald ve Takaaki Kajita deneyin nötrino salınımlarının bulunmasına katkısıyla 2015 Nobel Fizik Ödülü'nü kazandı.[1]

Yeraltı laboratuvarı kalıcı tesis olacak şekilde genişletildi ve şimdi SNOLAB adı altında birden fazla deney yürütüyor. SNG'de kullanılan ekipman SNG+ deneyi için şu anda yenilenmekte.

Deneysel motivasyon

Yere ulaşan güneş nötrinolarının sayımı ilk defa 1960'larda yapıldı. SNG'den önceki deneylerde bulunan nötrino sayıları standart Güneş modeline göre yapılan tahminlere göre eksik çıkıyordu, deneylerdeki hesaplamalarda bu açık Güneş nötrino problemi olarak biliniyordu. On yıllarca bu açığın sebebini bulmak için birçok fikir sunuldu, bunlardan birisi de nötrino salınımları hipotezidir. SNG'den önceki deneylerde kullanılan detektörler öncelikle ya da yalnızca elektron nötrinolarını tespit etmeye uygundu, müon nötrinoları ve tau nötrinolarını tespit etmede yetersizdi.

1984'te, California Üniversitesi, Irvene'den Herbert Chen ağır suyun güneş nötrinolarını tespit etmede avantajlarını gösterdi.[2] Önceki detektörlerin aksine, ağır su dedektörleri iki reaksiyona hassas duruma getiriyordu, ilk reaksiyon bütün nötrino çeşitlerine hassastı, diğer reaksiyon ise sadece elektron nötrinolarına hassastı. Dolayısıyla, böyle bir detektör nötrino salınımlarını doğrudan ölçebiliyordu. Araştırmanın Kanada'da yapılmasının sebebi ise, geniş ağır su stoklarıyla CANDU reaktörü enerji santrallerinı destekleyen, Kanada Atomik Enerji Şirketi araştırmalar için gerekli bütçeyi (değer C$330,000,000 piyasa fiyatları) masrafsız şekilde karşılamasıydı.[3][4]

Sudbury'deki Creighton Madeni, dünyanın en derin madenlerinden ve dolayısıyla düşük arka plan radyasyonuna sahipti. Bu durum, madeni Chen'in araştırması için ideal bir yer hâline getirdi[3] ve maden yönetimi bölgeyi sadece ek masraflar karşılığında uygun hale getirmeyi kabul etti.[5]:440

SNG işbirliği 1984 yılında ilk toplantısını yaptı.O dönemlerde TRIUMF'im KAON Fabrikası deneyi ile devlet araştırma fonu için rekabet içerisindeydi, ancak çeşitli üniversitelerden destek alan SNG hızlı bir şekilde geliştirme için seçildi. Resmî başlama emri 1990'da geldi.

Deney, nötrino etkileşimlerinin su içinde oluşturduğu rölativistik elektronların yaydığı ışığı inceledi. Rölativistik elektronlar kanal boyunca hareket ederken, kaybettikleri enerji mavi bir ışık yayarak Çerenkov ışıması gerçekleştirdi ve bu ışık doğrudan tespit edildi.

Detektör özellikleri

SNG detektörü içinde 1000 ton ağır su barındıran 6 metre çapındaki akrilik tanktan oluşuyordu. Tankın dış kısmındaki boşluk ise batmazlık ve radyason koruması sağlaması için normal su ile doluydu. Ağır su, yaklaşık 9,600 fotomultiper tüp 850 cm çapındaki jeodezik bir kürenin üzerine kurularak izlendi. Madende, detektörü barındıran oyuk bu derinlikte dünyanın en genişiydi, [6] taş patlamalarını engellemek için çeşitli yüksek performans taş cıvatalama tekniği kullanıldı.

Gözlem evi,diğer maden operasyonlarıdan izole edilmiş, 1.5 kilometrelik(0.9 mil) bir sürüklenmenin, "SNG sürüklenmesi" adında, sonunda yer almaktadır. Bu sürüklenme boyunca çok sayıda operasyon ve ekipman odaları, her biri izole oda olmak üzere, bulunmaktadır. Tesisin çoğunluğu 3000 Modelindeyken (Her 1ft3 hava için 1 μm veya daha büyük ve 3000 parçacıktan daha az) detektörün bulunduğu son oyuk 100 Modelindedir.[3]

Yüklü akım etkileşimi

Yüklü akım etkilişiminde, nötrino döteryumun içinde bulunan nötronu protona çevirir. Bu reaksiyon sırasında nötrino soğurulur ve elektron üretilir. Güneş nötrinoları müonların ve tau leptonlarının kütlesinden daha küçük enerjiye sahiptir. Bu yüzden yalnızca elektron nötrinoları bu reaksiyona katılabilir. Emilen elektron nötrionun enerjisinin büyük bir kısmını taşır, 5-15 MeV arasında ve tespit edilebilir. Üretilen proton ise yeterince enerjiye sahip olmadığından kolayca tespit edilemez. Bu reaksiyon sırasında üretilen tüm elektronlar her yönden emilir. Ancak, elektronları nötrinoların geldiği yöne yönlendiren ufak bir eğilim vardır.

Nötr akım etkileşimi

Nötr akım etkileşimleri sırasında, nötrino döteryumu onun ana nötron ve protonlarına kadar ayrıştırır. Aynı nötrino biraz daha az enerji ile devam eder ve üç nötrino çeşidinin de bu etkileşime katılma olasılığı aynıdır. Ağır sular nötronlar için küçük bir kesit alanına sahiptir ve nötronlar bir döteryum özü yakaladığında yaklaşık 6 MeV enerjiye sahip bir gama ışını (foton) üretilir. Bu gama ışığının yönünün ise nötrinonun yönü ile hiçbir bağlantısı yoktur. Nötronların bir kısmı akrilik tankı dolaşarak hafif sulara geçer ve hafif sular nötron yakalamak için büyük bir kesit alanına sahip olduğundan bu nötronlar çabucak yakalanır. Yaklaşık 2 MeV enerjiye sahip bir gama ışını bu tepkime sırasında üretilir ancak bu enerji detektör eşiğinin altında olduğundan gözlenemezler. Bu gama ışını Compton saçılması sırasında bir elektron ile çarpışır ve bu ivmelenen elektron Çerenkov radyasyonu ile tespit edilebilir.

Elektron esnek saçılması

Esnek saçılma etkileşiminde, bir nötrino atomik elektronlardan biriyle çarpışır ve enerjisinin bir kısmını elektrona aktarır. Her üç nötrino bu etkileşime nötr Z bozon değişmesi yoluyla ve elektron nötrinoları ise yüklü W bozonu değişmesi yoluyla katılabilir. Bu nedenle bu etkileşim elektron nötrinoları tarafında domine edilir ve bu yolla Süper-Kamiokande (Süper-K) detektörü güneş nötrinolarını gözlemleyebilir. Bu etkileşim göreceli olarak bilardoya benzer, bu nedenle üretilen elektronlar genellikle nötrinonun hareket vektörünün doğrultusundadır. (güneşin aksi yönünde). Bu etkileşim atomik elektronlarla gerçekleştiği için, ağır ve normal sularda aynı oranda etkileşir.

Deneysel sonuçlar ve etki

18 Haziran 2001'de, SNG'nin ilk bilimsel sonuçları yayınlanarak,[7][8] nötrinoların Güneş'deki hareketi süresince salındıklarını(ö.o başka bir çeşie dönüşebildiklerini) ilk kez kesin olarak kanıtladı. Bu salınım ise nötrinoların kütlelerinin sıfırdan farklı olduğunu gösterdi. SNG tarafından ölçülen bütün nötrino çeşitlerinin akısı, teorik tahmin ile uyuştu. SNG tarafından yapılan sonraki ölçümler ise onaylandı ve asıl sonucun kesinliğini arttırdı.

Her ne kadar Super-Kamiokande nötrino salınımı ile ilgili kanıtları 1998 gibi erken bir yılda yayınlayarak SNG'yi alt etmiş olsa da, Super-Kamiokande'nin sonuçları kesin ve güneş nötrinoları ile spesifik olarak alakalı değildi. SNG'nin sonuçları ise güneş nötrinolarındaki salınımı kanıtlayan ilk sonuçlardı. Bu sonuçlar, standart solar model açısından önemli sonuçlardı. Bu deneyin sonuçları, SNG'nin iki araştırmasının 1500'den fazla kez ve başka iki araştırmasının da 750'den fazla kez alıntılanmasına dayanarak söylenebilir ki, bu alanda büyük bir etki yarattı.[9] 2007 yılında Franklin Enstitüsü SNG'nin başkanı Arthur B. McDonald'ı Fizik alanında Benjamin Franklin Madalyası vererek ödüllendirdi.[10] 2015 yılında ise Arthur B. McDonal nötrinoların kütleleri hakkındaki buluşu ile Nobel Fizik Ödülü'nü kazandı.[11]

Diğer olası analizler

SNG detektörü devrede olduğu takdirde galaksimiz içerisinde oluşabilecek herhangi bir süpernovayı tespit edebilecek kapasitede. Süpernova tarafından emilmiş nötrinolar fotonlardan önce bırakıldığından dolayı, süpernova henüz görünür olmadan astronomi topluluğunu uyarmak mümkün. SNG, Super-Kamiokande ve Yüksek Hacim Detektörü ile birlikte Süpernova Erken Uyarı Sisteminin (SEUS) kurucu üyelerindendir. Bu zamana kadar herhangi bir süpernova tespit edilemedi.

SNG'nin deneyleri aynı zamanda kozmik ışınların atmosferdeki etkileşimleri ile üretilen atmosfer nötrinolarını da gözlemleyebilmektedir. SNG detektörünün Super-Kamiokande ile karşılaştırıldığındaki kısıtlı boyutundan dolayı,düşük kozmik ışınlı nötrino sinyalleri,1 GeV'nin altındaki nötrino enerjileri, istatistiksel olarak çok önemli değildir.

Katılımcı kurumlar

Büyük parçacık fiziği deneyleri büyük işbirliği gerektirir. SNG, yaklaşık 100 ortak çalışan kurumla diğer çarpıştırıcı deneylerine göre küçük bir gruptu. Katılımcılar:

Kanada

  • Carleton Üniversitesi
  • Laurentian Üniversitesi
  • Queen's Üniversitesi kaynak yayılması için birçok kalibrasyon kaynağı ve aleti tasarlayıp inşa etti.
  • TRIUMF
  • British Columbia Üniversitesi
  • Guelph Üniversitesi

Artık ortak çalışan kurumların arasında olmamasına rağmen, Chalk River Laboratuvarları ağır suyu tutan akrilik tankın inşasını yönetti ve Atomic Energy of Canada Limited ise ağır suyu temin etti.

Birleşik Krallık

  • Oxford Üniversitesi – Monte Carlo analiz programının büyük bir kısmını geliştirdi ve sürdürdü.

Amerika Birleşik Devletleri

Ödüller

Ayrıca bakınız

  • SNOLAB – SNG civarında inşa edilmiş kalıcı fizik laboratuvarı
  • SNG+ – SNG'nin takip deneyi
  • Homestake deneyi – 1970-1994 Lead, South Dakota'da bir madende yapılmış öncel bir deney

Kaynakça

  1. ^ "2015 Nobel Prize in Physics: Canadian Arthur B. McDonald shares win with Japan's Takaaki Kajita". CBC News. 6 Ekim 2015. 17 Nisan 2017 tarihinde kaynağından arşivlendi. Erişim tarihi: 23 Mayıs 2016. 
  2. ^ Chen, Herbert H. (Eylül 1984). "Direct Approach to Resolve the Solar-Neutrino Problem". Physical Review Letters. 55 (14). ss. 1534-1536. Bibcode:1985PhRvL..55.1534C. doi:10.1103/PhysRevLett.55.1534. 
  3. ^ a b c "The Sudbury Neutrino Observatory – Canada's eye on the universe". CERN Courier. CERN. 4 Aralık 2001. 25 Haziran 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Haziran 2008. 
  4. ^ "Heavy Water". 31 Ocak 2006. 19 Aralık 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 3 Aralık 2015. 
  5. ^ Jelley, Nick; McDonald, Arthur B.; Robertson, R.G. Hamish (2009). "The Sudbury Neutrino Observatory" (PDF). Annual Review of Nuclear and Particle Science. Cilt 59. ss. 431-65. doi:10.1146/annurev.nucl.55.090704.151550. 16 Mart 2016 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 23 Mayıs 2016. 
  6. ^ Brewer, Robert. "Deep Sphere: The unique structural design of the Sudbury Neutrinos Observatory buried within the earth". Canadian Consulting Engineer. 4 Mart 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 23 Mayıs 2016. 
  7. ^ Ahmad, QR (2001). "Measurement of the Rate of νe + dp + p + e Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory". Physical Review Letters. 87 (7). s. 071301. arXiv:nucl-ex/0106015 $2. Bibcode:2001PhRvL..87g1301A. doi:10.1103/PhysRevLett.87.071301. 
  8. ^ "Sudbury Neutrino Observatory First Scientific Results". 3 Temmuz 2001. 12 Aralık 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Haziran 2008. 
  9. ^ "SPIRES HEP Results". SPIRES. SLAC. 29 Ocak 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Ekim 2009. 
  10. ^ "Arthur B. McDonald, Ph.D." Franklin Laureate Database. Franklin Institute. 8 Şubat 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Haziran 2008. 
  11. ^ "The Nobel Prize in Physics 2015". 1 Temmuz 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Ekim 2015. 
  12. ^ "Past Winners – The Sudbury Neutrino Observatory". NSERC. 3 Mart 2008. 10 Ekim 2006 tarihinde kaynağından arşivlendi. Erişim tarihi: 4 Haziran 2008. 
Kaynak hatası: <references> üzerinde tanımlanan "handbook" adındaki <ref> etiketi önceki metinde kullanılmıyor. (Bkz: )

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Parçacık fiziği</span>

Parçacık fiziği, maddeyi ve ışınımı oluşturan parçacıkların doğasını araştıran bir fizik dalıdır. Parçacık kelimesi birçok küçük nesneyi andırsa da, parçacık fiziği genellikle gözlemlenebilen, indirgenemez en küçük parçacıkları ve onların davranışlarını anlamak için gerekli temel etkileşimleri araştırır. Şu anki anlayışımıza göre bu temel parçacıklar, onların etkileşimlerini de açıklayan kuantum alanlarının uyarımlarıdırlar. Günümüzde, bu temel parçacıkları ve alanları dinamikleriyle birlikte açıklayan en etkin teori Standart Model olarak adlandırılmaktadır. Bu yüzden günümüz parçacık fiziği genellikle Standart Modeli ve onun olası uzantılarını inceler.

<span class="mw-page-title-main">Nötron</span> Yüke sahip olmayan atomaltı parçacık

Nötron, sembolü n veya n⁰ olan, bir atomaltı ve nötr bir parçacıktır. Proton ile birlikte, atomun çekirdeğini meydana getirir. Bir yukarı ve iki aşağı kuark ve bunların arasındaki güçlü etkileşim sayesinde oluşur. Proton ve nötron yaklaşık olarak aynı kütleye sahiptir fakat nötron daha fazla kütleye sahiptir. Nötron ve protonun her ikisi nükleon olarak isimlendirilir. Nükleonların etkileşimleri ve özellikleri nükleer fizik tarafından açıklanır. Nötr hidrojen atomu dışında bütün atomların çekirdeklerinde nötron bulunur. Her atom farklı sayıda nötron bulundurabilir. Proton ve nötronlar, kuarklardan oluştukları için temel parçacık değildirler.

Antimadde, karşı madde veya karşıt madde, maddenin ters ikizi. Paul Dirac denklemiyle ortaya çıkarılmış ve daha sonraki gözlemlerle de varlığı doğrulanmıştır. Antimadde en basit hâliyle normal maddenin zıddıdır. Antimaddenin atomaltı parçacıkları, normal maddeye göre zıt özellikler taşımaktadır. Bu atomaltı parçacıkların elektrik yükleri, normal maddenin atomaltı parçacıklarının tam tersidir. Antimadde, Büyük Patlama'dan sonra normal maddeyle birlikte oluşmuştur; fakat sebebinin ne olduğunu bilim insanları tam anlamıyla bilemeseler de evrende oldukça nadir bulunmaktadır.

Tau; tau leptonu, tau parçacığı veya tauon olarak adlandırılır. Tau negatif yüklü, elektron benzeri bir temel parçacıktır. Yarım spinlidir. Elektron, müon ve üç nötrinolara birlikte tau lepton kategorisindedir. Tau da tüm parçacıklar gibi, bir antimadde karşılığına sahiptir; Tau'nun bu durumuna "antitau" denir..

<span class="mw-page-title-main">Proton-proton zincirleme reaksiyonu</span> yıldızların hidrojeni helyuma dönüştürdüğü bilinen iki nükleer füzyon reaksiyonu setinden biri

proton-proton (pp) zincir reaksiyonu, yıldızların hidrojeni helyuma dönüştürdüğü bilinen iki nükleer füzyon reaksiyonu setinden biridir. Güneş kütlesine eşit veya daha az kütleli yıldızlarda egemendir. Bilinen diğer reaksiyon CNO döngüsüdür. CNO, daha çok güneş kütlesinin yaklaşık 1.3 katından daha büyük kütlelere sahip yıldızlarda hakim olabilen reaksiyonlardır.

'Müon, elektron benzeri-1 e yük ve 1/2 spinli ancak daha yüksek kütleye sahip bir temel parçacık. Müon parçacığı, lepton olarak sınıflandırılmıştır. Diğer leptonlar gibi, Müonun da daha küçük parçacıklara indirgenemeyen bir parçacık olduğu düşünülmektedir.

<span class="mw-page-title-main">Nükleer fizik</span> atom çekirdeğinin yapısı ve davranışı ile uğraşan fizik alanı

Nükleer fizik veya çekirdek fiziği, atom çekirdeklerinin etkileşimlerini ve parçalarını inceleyen bir fizik alanıdır. Nükleer enerji üretimi ve nükleer silah teknolojisi nükleer fiziğin en çok bilinen uygulamalarıdır fakat nükleer tıp, manyetik rezonans görüntüleme, malzeme mühendisliğinde iyon implantasyonu, jeoloji ve arkeolojide radyo karbon tarihleme gibi birçok araştırma da nükleer fiziğin uygulama alanıdır.

<span class="mw-page-title-main">Nötrino</span> atom altı ya da temel parçacıklardan biri

Nötrino, ışık hızına yakın hıza sahip olan, elektriksel yükü sıfır olan ve maddelerin içinden neredeyse hiç etkileşmeden geçebilen temel parçacıklardandır. Bu özellikleri nötrinoların algılanmasını oldukça zorlaştırmaktadır. Nötrinoların çok küçük, ancak sıfır olmayan durgun kütleleri vardır. Yunan alfabesindeki ν (nü) ile gösterilir.

W ve Z bozonları, zayıf etkileşime aracılık eden temel parçacıklardır. Bu bozonların keşfi parçacık fiziğinin Standart Modeli için büyük bir başarının müjdecisi oldu.

<span class="mw-page-title-main">Zayıf etkileşimli büyük kütleli parçacık</span>

Zayıf etkileşimli büyük kütleli parçacık, egzotik parçacıklardan oluşan karanlık madde adayıdır.

Standart solar model (SSM), güneşi küresel bir gaz topu olarak ele alan matematiksel bir yaklaşımdır. Teknik olarak simetrik küresel durağanımsı bir yıldız modeli olan bu model, yıldızsal yapıyı tarif eden basit fizik prensiplerinden elde edilmiş birçok diferansiyel denkleme sahiptir. Bu model, güneşin ışıklılığı, çapı, yaşı ve bileşenleri gibi iyi bilinen sınır koşullara bağlıdır. Güneş'in yaşı direkt olarak ölçülemez. Tahmini bir değer bulmanın yollarından biri en eski meteorların yaşını bulmak ve Güneş sisteminin gelişim modellerine bakmaktır. Günümüzdeki Güneş'in fotosferinin yapısı %74,9 oranında hidrojen ve %23.8 oranında helyumdan oluşmaktadır. Astronomide metaller denilen tüm ağır elementler ise %2den daha az bir kütleye tekabül etmektedir. Standart solar model yıldızsal gelişim teorisinin doğruluğunu test etmek için kullanılmaktadır. Aslında, iki serbest parametre olan helyum mevcudiyeti ve karışma uzunluğu değerlerini bulmanın tek yolu SSMyi gözlemlenen güneşe "uygun" hale getirecek şekilde ayarlamaktır.

<span class="mw-page-title-main">Arthur B. McDonald</span> Kanadalı fizikçi

Arthur Bruce McDonald, Kanadalı astrofizikçi. McDonald Sudbury Nötrino Gözlemevi Enstitüsü direktörü ve Kingston, Ontario'da bulunan Queen Üniversitesi'nde parçacık astrofiziği dalında Gordon ve Patricia Gray Kürsüsü başkanıdır. Japon fizikçi Takaaki Kajita ile ortaklaşa 2015 Nobel Fizik Ödülü'ne layık görülmüştür.

Solar nötrino problemi, Dünya etrafında bulunan nötrino sayısı ve Güneş'in iç kısmının modellerine dayalı teorik hesapların arasındaki çelişkiydi. Bu çelişki 1960'ların ortalarında gözlemlendi ve 2002 civarında yeni nötrino fiziği anlayışıyla çözüldü. Bu anlayış parçacık fiziği, standart model ve özellikle nötrino salınımlarında önemli gelişmeler sağlamıştır. Temelde, nötrinoların kütlesi vardır ve türleri, güneşin içinden üretilmesi tahmin edilenden farklı bir türe dönüşebilir ve bu türler o dönemde kullanılan dedektörler tarafından tespit edilemeyebilir.

Nötrino salınımları, üretilen ve belirli bir lepton türü olan bir nötrinonun daha sonradan farklı bir tür olarak ölçülebilmesine denen bir kuantum mekaniği fenomenidir. Uzaya yayılan nötrinoların türleri periyodik olarak değişir.

Süper-Kamiokande Hida, Gifu, Japonya'da kurulmuş bir nötrino gözlemevidir. Bu gözlemevi proton bozunması, güneş ve atmosfer nötrinolarını incelemek ve Samanyolu'ndaki süpernovalara gözcülük etmek için kurulmuştur.

<span class="mw-page-title-main">Bruno Pontecorvo</span> İtalyan fizikçi

Bruno Pontecorvo, Enrico Fermi' nin ilk zamanlarındaki asistanı, yüksek enerji fiziği ve nötrinolar üzerine sayısız çalışmanın yazarı olan İtalyan nükleer fizikçi. Bir komünistin ikna etmesi sonucu, 1950'de Sovyetler Birliği'ne gitti ve burada muon çürümesi ve nötrinolar üzerine araştırmalarına devam etti. Prestijli Pontecorvo Ödülü, 1995 yılında onun anısına tesis edildi.

<span class="mw-page-title-main">Nötrino dedektörü</span>

Nötrino dedektörü, nötrinoları çalışmak için dizayn edilmiş fizik aparatı. Nötrinolar diğer maddelerle yalnızca zayıf etkileşimlerde bulunduğundan, nötrino dedektörleri kaile alınır bir sayıda nötrinoyu tespit edebilmek için çok büyük olmalıdırlar. Bu aparatlar genelde yerin altına inşa edilirler. Sebebi ise aleti kozmik ışınlardan ve diğer arka plan ışınımlardan yalıtmaktır.

Borexino, düşük enerjili (alt-MeV) güneş nötrinolarını incelemek için oluşturulmuş bir parçacık fiziği deneyidir.

Karbon yakma işlemi veya karbon füzyonu, karbonu diğer elementlerle birleştiren büyük kütleli yıldızların (doğumda en az 8 tane) çekirdeğinde gerçekleşen bir dizi nükleer füzyon reaksiyonudur. Yüksek sıcaklıklar (> 5×108 K veya 50 keV) ve yoğunluklar (> 3×109 kg/m3) gerektirmektedir.

<span class="mw-page-title-main">Homestake deneyi</span>

Homestake deneyi astrofizikçiler Raymond Davis, Jr. ve John Bahcall tarafından 1960'ların sonunda yapılan bir deneydir. Amacı Güneş'te meydana gelen nükleer füzyondan yayılan nötrinoları toplamak ve saymaktı. Deney, güneş nötrinolarını başarılı bir şekilde tespit edip sayan ilk deneydi ve sonuçlardaki tutarsızlık, solar nötrino problemini yarattı. Deney 1970'den 1994'e kadar sürekli olarak yürütüldü.