İçeriğe atla

Student'in t testi

Student'ın t-testi istatistik bilimi içinde incelenen, eğer sıfır hipotez desteklenmekte ise test istatistiğinin bir Student's t-dağılımı gösterdiği hallerde uygulanan çıkartımsal istatistiksel hipotez sınamasıdır. Verilen iki değişik grup sayısal verinin birbirinden anlamlı olarak farklılık gösterip göstermemesini sınamak için kullanılabilir. En sıkça uygulanma örnekleri eğer test istatistiği içinde bulunan ölçek parametre faktörünün değerinin bir normal dağılım gösterdiği bilinmekte olduğu hallerde tatbik edilmektedir. Eğer test istatistiği içinde bulunan ölçek parametresi faktörünün değeri bilinmiyorsa ve bu faktör veriye dayayan bir kestirim ile ifade edilmekte ise (gayet iyice tanımlanmış özel belirli hallerde) test istatistiği bir Student'ın t-dağılımı gösterebilir.

Tarihçe

t-test ve t-istatistiği kullanma ilk defa 1908'de Dublin, İrlanda'da önemli bir biracılık şirketi olan Guinness birasının kalitesini sınmak amacıyla bu bira fabrikasına özel olarak tutulmuş bir akademik kimyager olan (ve "Student" rumuzu ile akademik makalelerini imzalayan) William Sealy Gosset tarafından ortaya çıkartılmıştır ve kullanılmaya başlanmıştır. Guiness Şirketi'nin sahibi Claude Guinness imal ettiği bira ürününün tek bir yüksek standartta üretilmesini sağlamak Oxford Üniversitesi ve Cambridge Üniversitesi fen bilimleri mezunlarından en iyilerinden biyokimya ve istatistik bilimlerini pratikte sanayi imalat süreclerinde kullanmaya koyabilecek mezunlar istihdam etmeye önem vermekte idi. Gosset t-testini Dublin'de Guinness bira fabrikasının özel imalatı olan siyah ve yoğun "stout" adı verilen bira tipinin standart olarak üretilip üretilmediğini sınamak için ortaya çıkardı. Bu istatistiksel üretim kalitesi kontrol aracının geniş bir alanda da uygulanabileceği gayet açık olarak anlaşılmıştı. 1908'de Gosset ortaya çıkardığı "t-test" yöneteminin matematiksel olarak açıklanmasını bir bilimsel makale haline getirdi ve gayet itibarlı akademik bilimsel dergi olan "Biometrica" dergisine sundu. Bu dergi bu makaleyi yayınlamayı kabul etti. Fakat prensip olarak Guinness Şirketi bu sirkette çalışanlarin kendi isimleri ile makaleler yazıp bastırmalarına iyi bakmamakta idi. Bunun için Gosset Biometrika'da yayınlacak makalesi için kendi ismini kullanamadı ve makalesi "Student" rumuzu ile bastırıldı. Guinness ileri teknoloji kullanan çalışanlarına üniversiteler de ileri bilimsel çalışmalar yapmaları için akademik izin de vermekte idi. Gosset 1906-1907'de Londra Üniversitesi'ne bağlı olan University College'de Profesör Karl Pearson'un başı olduğu Biyometri Laboratuvarı'ndan çalışmaya başladı. O zaman Gossen'in ismi ve bilimsel ünü istatistikçiler ve biyometriciler tarafından bilinmekteydi ve bu akademik çalışmalar t-testinin geliştirilip kullanılıp yaygınlaştırılmasında önemli rol oynadılar. Fakat günümüze kadar çözümü bilinmeyen bir bilimsel sorun, istatistiksel t-testinin geliştirilmesinde Guinness firmasının pratik alanda yaptığı katkınin ne kadar olduğu ve Gosset'in Londra University College'de yaptığı akademik çalışmaların katkılarının ne olduğudur.

Kullanim

Değişik t-testlerinin en sık olarak kullanılanları arasında şunlar bulunmaktadır:

  • Tek-örneklem konum testi:Tek anakütle ortalaması için parametrik hipotez sınaması veya μ için sınama. Anakütlenin ortalamasının sıfır hipotezi tarafından verilmiş olan değere eşit olup olmadığının sınanması.
  • İki-örneklem konum testi: İki anakütle ortalaması farkı için hipotez sınaması veya iki anakitlenin Beklenen değerleri veya iki ana kütle ortalaması farkının (yani μ12) değerinin problemde verilen değere (çok kere 0 değere) eşit olup olmadığı için sınaması.

Pratik istatistiksel kullanımlarda "iki-örneklem konum testi" pratikte gayet genel olarak kullanılmaktadır. Fakat teorik bakımdan daha doğru ve sıkı düşünülürse "iki örneklem konum testi" ancak gayet belirli iki örneklem verileri için uygulanmması gerekmektedir. Bu belirli varsayımlara göre iki örneklemin kaynak olarak geldiği iki anakütlenin varyanslarının bilinmesi ve birbirine eşit olması gerekmektedir. Fakat pratik istatistik uygulamaların çoğunda bu eşit varyanslar varsayımı iki anakütle varyansının hiç ölçülmeden, sadece bir düşünce mahsulü olarak, eşit oldukları kabul edilmektedir. Bu tip düşünce mahsulü varyans eşitliği kabul edilmesinden sonra t-testinin uygulanmasını Welch'in t-testi olarak anıp bildirmek teorik olarak daha uygundur. Bu türlü elde edilen örneklem verilerine "eşlileştirme yapılmadan örneklem" veya "iki bağımsız örneklem" adı da verilmektedir. Bu "eşlileştirme yapılmadan örnekleme"'de iki değişik verilerin kaynağı olan iki "veri çerçevesi" bulunmaktadır ve bu iki veri çerçevesi içindeki veriler arasında bağımlılık bulunmamaktadır. "Eşlileştirme yapılmadan örnekleme" alınması halinde anakitle içinde bulunan her bir eleman, ancak tek bir örneklem içine girebilmekte ve eğer bir eleman bir çerçeve içine girmişse ikinci örneklem çerçevesi içinde bulunması imkânı olmaması gerekmektedir yani iki örneklem çerçevesinin birbiri üstüne binişmeleri ("överlepping" olmaları) imkânsızdır.[1]

  • Aynı anakütle elemanın yanı istatistiksel birimin üzerinde yapılan iki değişik ölçülme ile ortaya çıkan "eşlileştirilmiş örneklem" verileri ile yapılan ölçülme farklarının ortalaması için "t-testi". Bu testte sıfır hipotez anakitle için ölçüm farklarının ortalamasının 0 değere eşit olduğu sınanmaktadır. Örneğin, bir kanser hastasının tümörünün büyüklüğü ilk defa kanser ilacı vermeden önce ölçülmekte ikinci defa kanser ilacı verildikten sonra ölçüm alınmaktadır. Bu önce-ve-sonra seklindeki iki ölçüm arasındaki fark analiz için veridir yani kullanılan veri tek tek ölçüm değil birbirine bağımlı olarak tek elemanda (tek bir hastada) iki (tedaviden önce ve tedaviden sonra) ölçüm arasındaki farktır. Bu ölçümler sayica büyükçe bir örneklem hastalardan alınması gerekmektedir. Eğer tedavi efektif ise, birçok hasta için tümör büyüklüğünün ölçüm farklarının çoğunun negatif olması ve farklar ortalamasının sıfır altında olması beklenmektedir. Bu tip örneklem verileri için t-testine "eşlileştirilmiş örneklem t-testi" veya "tekrarlanmış ölçmeler için t-testi" adı verilmektedir.[1][2]
  • Doğrusal regresyon doğrusu'nun eğiliminin 0 değere eşit olup veya 0 değerden anlamlı olarak değişik olduğu.

Varsayımlar

Eşlileştirilmiş olmayan ve eşlileştirilmiş olan iki-örneklemli t-testleri

Bağımsız (eşlileştimiş olmayan) örneklemler

Eşlileştirilmiş örneklemler

Hesaplamalar

Bir örneklem için t-testi

İsim Formül Varsayımlar

Bağımsız iki-örneklemli t-testi

İki-örneklem ve iki anakütle parametresi farkı için hipotez sınamaları

Eşit örneklem büyüklükleri, eşit varyans

Eşit veya eşit olmayan örneklem büyüklükleri, eşit varyans

İsim Formül Varsayımlar
İki-örneklem pool edilmiş t-testi


(Normal anakütle veya n1+n2 > 40) ve bağımsız gözlemler ve σ1 = σ2 ve (bilinmeyen σ1 ve σ2 değerleri)
İsim Formül Varsayımlar
İki-örneklem z-testi Normal dağılım ve bağımsız gözlemler ve (bilinen σ1 ve σ1 değerleri)

Eşit veya eşit olmayan örneklem büyüklükleri, eşit olmayan varyanslar

İsim Formül Varsayımlar
İki-örneklem pool edilmemiş t-testi



veya

(Normal anakütleler veya n1+n2 > 40) ve bağımsız gözlemler ve σ1 ≠ σ2 ve (bilinmeyen σ1 ve σ2 değerleri)

Eşlileştirilmiş örneklemler için bağımlı t-testi

İsim Formül Varsayımlar
Eşlileştirilmiş t-testi

(Normal farklar anakütlesi veya n < 30) ve bilinmeyen σ değeri

Regresyon doğrusunun eğilimi

Çözülmüş problem örnekleri

Eşit olmayan varyanslar

Eşit olan varyanslar

Anakitle konum problemleri için t-testlerine alternatifler

Çoklu-değişirli ististiksel sınama


Tek-örneklem için T2 testi

İki-örneklem için T2 testi

Yazılım uygulamaları

Ayrıca bakınız

Notlar

  1. ^ a b Fadem, Barbara (2008). High-Yield Behavioral Science (High-Yield Series) (İngilizce). Hagerstwon, MD: Lippincott Williams and Wilkins. ISBN 0-7817-8258-9. 
  2. ^ Zimmerman, Donald W. (1997). "A Note on İnterpretation of the Paired-Samples t Test". Journal of Educational and Behavioral Statistics. ss. 349-360. doi:10.3102/10769986022003349. JSTOR 1165289. 

Kaynakça

  • Boneau, C. Alan (1960). "The effects of violations of assumptions underlying the t test". Psychological Bulletin c.57 no.:(1) say. 49–64. doi:10.1037/h0041412.
  • Edgell, Stephen E., & Noon, Sheila M (1984). "Effect of violation of normality on the t test of the correlation coefficient". Psychological Bulletin c.95 no.(3) s. 576–583. doi:10.1037/0033-2909.95.3.576.

Ek bibliyografya

  • O'Mahony, Michael (1986). Sensory Evaluation of Food: Statistical Methods and Procedures. CRC Press. s. 487. ISBN 0-82477337-3. (İngilizce)
  • Press, William H.; Saul A. Teukolsky; William T. Vetterling; Brian P. Flannery (1992).Numerical Recipes in C: The Art of Scientific Computing. p. 616[] Cambridge University Press. s 616. ISBN 0-521-43108-5. (İngilizce)

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Student'in t dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.

Hipotez testi, bir hipotezin doğruluğunun istatistiksel bir güvenilirlik aralığında saptanması için kullanılan yöntem.

Varyans Analizi istatistik bilim dalında, grup ortalamaları ve bunlara bağlı olan işlemleri analiz etmek için kullanılan bir istatistiksel modeller koleksiyonudur. Varyans Analizi kullanılmaktayken belirlenmiş bir değişkenin gözlemlenen varyansı farklı değişim kaynaklarına dayandırılabilen varyans bileşenine ayrılır. En basit şekliyle varyans analizi birkaç grubun ortalamalarının birbirine eşit mi eşit değil mi olduğunu sınamak için bir çıkarımsal istatistik sınaması olur ve bu sınama iki-grup için yapılan t-test sınamasını çoklu-gruplar için genelleştirir. Eğer, çoklu değişkenli analiz için birbiri arkasından çoklu iki-örneklemli-t-sınaması yapmak istenirse bunun I. tip hata yapma olasılığını artırma sonucu doğurduğu aşikardır. Bu nedenle, üç veya daha fazla sayıda ortalamaların ististiksel anlamlığının sınama ile karşılaştırılması için Varyans Analizleri daha faydalı olacağı gerçeği ortaya çıkmaktadır.

<span class="mw-page-title-main">Betimsel istatistik</span>

Betimsel istatistik veya betimsel sayımlama istatistik bilim alanında üç temel kısmından biridir. Sayısal verilerinin derlenmesi, toplanması, özetlenmesi ve analiz edinilmesi ile ilgili istatistiktir.

İstatistiksel terimler, kavramlar ve konular listesi matematik biliminin çok önemli bir alt-bölümü olan istatistik biliminde içeriğinde bulunan konuların çok ayrıntılı olarak sınıflandırılması ile ortaya çıkarılmıştır. Milletlerarası İstatistik Enstitüsü bir enternasyonal bilim kurumu olarak istatistik bilimi konu ve terimlerini bir araya toplayıp 28 bilim dilinde karşılıklı olarak yayınlamıştır. Bu uğraşın sonucunun milletlerarası bilim camiasının büyük başarılarından biri olduğu kabul edilmektedir. Ortaya çıkartılan, istatistik bilimi içinde kullanılan ve bu bilime ait özel kavramların ve terimlerin listesi, tam kapsamlı olma hedeflidir ve böylelikle istatistik bilimi için bir Türkçe yol haritası yapılmış olmaktadır.

İstatistik biliminde normallik sınamaları bir seri parametrik olmayan istatistik sınamalar çeşididir. Normallik sınamalarının amacı verilmiş bir veri dizisinin normal dağılıma uygunluk iyiliğinin incelenmesidir. Bir sıra parametrik olmayan sınama geliştirilmiş bulunmasına rağmen birçok istatistikçi pratikte daha az kesin ve daha çok subjektif sağduyu ve ekpertiz gerektiren gösterim karşılaştırmalarını kullanmaktadır. Normallik sınamaları yalnız örneklem verilerinin doğrudan doğruya incelenmesinde kullanılmamakta, fakat özellikle ekonometrik analizlerde tek regresyon denklemi tahmininden sonra çıkan hataların normal olup olmadıklarının araştırılması için de çok kullanılmaktadırlar.

İstatistik biliminde önemli bir yeri olan parametrik olmayan istatistik parametrik olmayan istatistiksel modeller ve parametrik olmayan çıkarımsal istatistik, özellikle parametrik olmayan istatistiksel hipotez sınamalar ile ilgilenir. Parametrik olmayan yöntemler çok defa dağılımlardan serbest yöntemler olarak da anılmaktadır, çünkü verilerin bilinen belirli olasılık dağılımı gösteren kaynaklardan geldiği varsayımına dayanmamaktadır.

İstatistik bilim dalında Kruskal-Wallis sıralamalı tek yönlü varyans analizi, bağımsız gruplar arası anakütle medyanlarının eşitliğini sınamak amacı ile kullanılan bir parametrik olmayan istatistik sınamasıdır. Adı bu yöntemi ilk defa ortaya koyan William Kruskal ve W. Allen Wallis atıfla konmuştur. Matematiksel olarak ayrı olmakla beraber, tek yönlü varyans analizinin bir değişik şekli olarak görülebilir. Diğer bir görüşe göre Mann-Whitney U sınamasının 3 veya daha çoklu gruplara genişletilmesidir.

İstatistik bilim dalı içinde Friedman sıralamalı iki yönlü varyans analizi sonradan çok tanınmış bir iktisatçı olan Amerikan Milton Friedman tarafından ortaya atılan bir parametrik olmayan istatistik sınamasıdır.

Mann-Whitney U testi niceliksel ölçekli gözlemleri verilen iki örneklemin aynı dağılımdan gelip gelmediğini incelemek kullanılan bir parametrik olmayan istatistik testdir. Aynı zamanda Wilcoxon sıralama toplamı testi veya Wilcoxon-Mann-Whitney testi) olarak da bilinmektedir. Bu testi ilk defa eşit hacimli iki örneklem verileri için Wilcoxon (1945) ortaya atmıştır. Sonradan, Mann and Whitney (1947) tarafından değişik büyüklükte iki örneklem problemleri analizleri için uygulanıp geliştirilmiştir.

İstatistik bilim dalı içinde tekrarlama sınaması iki değer (0-1) alan veya iki değer alma şekline dönüştürülmüş bir kategorik değişken için örneklem veri serisinin ardı ardına bir rastgele sıralama ile gelip gelmediğini sınamak için kullanılan bir parametrik olmayan istatistik yöntemidir.

İstatistik bilim dalında, Kolmogorov-Smirnov (K-S) sınaması parametrik olmayan istatistik olup Andrey Kolmogorov ve Nikolai Smirnov adlarındaki iki Sovyet bilim insanı tarafından oluşturulmuştur.

F-testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan parameterik çıkarımsal sınama yöntemidir. F-testi sıfır hipotezine göre gerçekte bir F-dağılımı gösteren sınama istatistiği bulunduğu kabul edilen hallerde, herhangi bir istatistiksel sınama yapma şeklidir. Bu çeşit bir istatistiksel sınama önce Ronald Fisher tarafından 1920'li yıllarda tek yönlü varyans analizi için ortaya atılıp kullanılmış ve sonradan diğer şekillerde F-dağılım kullanan sınamalar da ortaya atılınca, bu çeşit sınamalara genel isim olarak F-testi adı verilmesi Ronald Fisher anısına George W. Snecedor tarafından teklif edilip, istatistikçiler tarafından F-testi bir genel isim olarak kabul edilmiştir.

Güven aralığı, istatistik biliminde bir anakütle parametresi için bir çeşit aralık kestirimi olup bir çıkarımsal istatistik çözüm aracıdır. Bir anakütle parametre değerinin tek bir sayı ile kestirimi yapılacağına, bu parametre değerini kapsayabilecek iki sayıdan oluşan bir aralık bulunur. Böylece güven aralıkları bir kestirimin ne kadar güvenilir olduğunu gösterir.

<span class="mw-page-title-main">Anlamlılık seviyesi</span>

Anlamlılık seviyesi, istatistik biliminde, İngiliz istatistikçi Ronald Fisher tarafından çıkartımsal hipotez sınama yönteminin kurulması sırasında kavramlaştırılmış özel bir manası olan bir bilimsel ve istatistiksel terimdir. İstatistiksel anlamlılık eğer bir sonucun gerçekleşme olasılık değerlendirilmesine göre olabilirliği düşük değil ise ortaya çıkar.

Tek anakütle ortalaması için parametrik hipotez sınaması veya tek-örneklem için sınama veya μ için sınama, bir rastgele örneklem ortalaması ile bu örneklemin çekilmiş olduğunu düşündüğümüz anakütlenin μ ile belirtilen "anakütle ortalaması" hakkında bir hipotez değeri belirtilmesinin anlamlı olup olmadığını araştırmamızı sağlayan parametrik hipotez sınamasıdır.

Çıkarımsal istatistikte, boş hipotez, sıfır hipotez ya da sıfır hipotezi, beklenenin dışında bir durumun olmadığını, mesela gruplar ya da değişkenler arasında bir ilişki bulunmadığını veya ölçülen iki olgunun arasında bir fark olmadığını kabul eden genel bir önermedir. Örneğin tıpta, denenen bir tedavinin etkisiz olması; hukukta, sanığın suçsuz olması birer boş hipotezdir. Modern bilim hipotezler üretip bunları test ederek ilerler; bir boş hipotezinin belirli bir güvenilirlik aralığında istatistiksel olarak kabul ya da reddedilmesi hipotez testleriyle yapılmaktadır.

Ki-kare testi veya χ² testi istatistik bilimi içinde bir sıra değişik problemlerde kullanılan bazıları parametrik olmayan sınama ve diğerleri parametrik sınama yöntemidir. Bu çeşit istatistiksel sınamalarda test istatistiği için "örnekleme dağılımı", sıfır hipotez gerçek olursa ki-kare dağılımı gösterir veya sıfır hipotez "asimptotik olarak gerçek" olursa, eğer sıfır hipotez gerçekse ve eğer örnekleme hacmi istenilen kadar yeterli olarak büyük ise bir ki-kare dağılımına çok yakın olarak yaklaşım gösterir.

Pearson ki-kare testi nicel veya nitel değişkenler arasında bağımlılık olup olmadığının, örnek sonuçlarının belirli bir teorik olasılık dağılımına uygun olup olmadığının, iki veya daha fazla örneğin aynı anakütleden gelip gelmediğinin, ikiden fazla anakütle oranının birbirine eşit olup olmadığının ve çeşitli anakütle oranlarının belirli değere eşit olup olmadığının araştırılmasında kullanılır. İstatistik biliminin çıkarımsal istatistik bölümünde ele alınan iki-değişirli parametrik olmayan test analizlerinden olan ve ki-kare dağılımı'nı esas olarak kullanan ki-kare testlerinden en çok kullanılanıdır. İngiliz istatistikçi olan Karl Pearson tarafından 1900'da ortaya çıkartılmıştır.

İstatistikte, Welch'in t-testi veya eşit olmayan varyanslar t-testi, iki popülasyonun eşit ortalamalara sahip olduğu hipotezini test etmek için kullanılan iki örneklemli bir konum testidir. Welch'in t-testi, Student'ın t-testinin uyarlanmasıdır, Yani, Student'ın t testi yardımıyla türetilmiştir ve iki numunenin eşitsiz varyanslara ve eşit olmayan örneklem boyutlarına sahip olması durumunda daha güvenilirdir. Bu testlere, genellikle, karşılaştırılan iki numunenin altında yatan istatistiksel birimler çakışmaz olduğunda tipik olarak uygulandığı için "eşleştirilmemiş" veya "bağımsız örnekler" "t" testleri olarak adlandırılır.Welch'in t-testinin Student'ın t-testinden daha az popüler olduğu ve okuyuculara daha az tanıdığı göz önüne alındığında, kısaca "Welch'in eşitsiz varyans t-testi" veya "eşitsiz varyans t -testi" daha bilgilendirici bir addır.