İçeriğe atla

Stres-enerji tensörü

Stres-enerji tensörünün karşıdeğişkin bileşenleri.

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

Tanım

Stres-enerji tensörü üstsimge değişkenlerin kullanımını kapsamaktadır. Eğer Uluslararası Birimler Sisteminde Kartezyen koordinatlar kullanılıyorsa, konum dört vektörünün bileşenleri şu şekilde verilir: x0 = t, x1 = x, x2 = y ve x3 = z, burada t saniye cinsinden zaman ve x, y, z metre cinsinden uzaklığı belirtmektedir.

Stres-enerji tensörü, ikinci dereceden tensör Tαβ olarak tanımlanmıştır ve bir yüzeydeki sabit xβ koordinatının momentum vektörünün α’’’ncı elemanının akısını verir. Görelilik teorisinde, bu momentum vektörü dört-momentum olarak geçer. Genel görelilikte stres-enerji tensörü simetriktir.

Einstein-Cartan teorisi gibi diğer alternatif teorilerde, stres-enerji tensörü kusursuzca simetrik olmayabilir çünkü fırıl tensörü sıfırdan farklı olabilir, geometrik olarak bu durum sıfırdan farklı burulma tensörü olarak açıklanmıştır.

Tensörün bileşenlerini tanımlamak

Stres enerji tensörü ikinci dereceden olduğundan dolayı, bileşenleri 4 × 4 matris olarak gösterilebilir:

Aşağıdaki denklemlerde i ve k’’ 1’den 3’e kadar değer kümesidir.

Zaman-zaman bileşeni burada göreceli kütle yoğunluğudur ve kütle yoğunluğunun ışık hızının karesine bölümünden elde edilmektedir. Basit fiziksel yorumlamalar içerdiğinden dolayı bu konu özel bir ilgiye sahiptir. Mükemmel sıvılar için bu bileşen;

'dir

ve boş uzay dışında elektromanyetik alanlarda bu bileşen;

'dir.

Burada E elektriksel alan, B ise manyetik alandır.

Göreceli kütlede xi yüzeyi boyunca akı lineer momentumda i'nci bileşenin yoğunluğuna denk gelir.

Bileşenler

xk yüzeyindeki lineer momentumun i‘nci bileşenin akısını gösterir. Özellikle,

(toplanmadan) normal stresi gösterir ve yönden bağımsız olduğu zaman basınç olarak adlandırılır. Geri kalan bileşenler

kırkım stresini gösterir (stres tensörü ile karşılaştırıldığında).

Katı hal fiziği ve akışkanlar mekaniğinde, stres tensörü doğru referans çerçevesinde stres enerji tensörünün uzaysal bileşeni olarak tanımlanmıştır. Diğer bir deyişle, mühendislikte stres enerji tensörü buradaki stres enerji tensöründen farklılık gösterir.

Eşdeğişkin ve karışık biçimler

Bu yazının çoğunda stres enerji tensörünün karşıdeğişkin formu Tμν ile ilgileneceğiz. Buna karşın, eşdeğişkin formuyla çalışmak da bazen gerekli olmaktadır.

ya da karışık biçimi,

ya da karışık tensör yoğunluğu olarak

Korunum Yasası

Özel görelilikte

Stres enerji tensörü uzay zamanı ötelemesiyle ilişkili korunmuş Noether akımıdır.

Yerçekimsel olmayan stres enerjisinin ıraksaması sıfırdır. Diğer bir deyişle, yerçekimsel olmayan enerji ve momentum korunur,

Yerçekimi ihmal edilebilir olduğunda ve uzay zamanı için kartezyen koordinat sistemi kullanıldığında, bu denklem kısmi türev cinsinden şu şekilde gösterilebilir;

Bunun integral formu şu şekildedir;

Burada N’’, uzay zamanın sıkılaştırılmış dört boyutlu herhangi bir bölgesi, ise üç boyutlu aşırıyüzey sınırı ve dışa doğru gösteren normalinden farklı olan sınır elementidir.

Düz uzay zamanında ve kartezyen koordinatlar kullanılarak, eğer biri stres enerji tensörünün simetrisini bununla birleştirirse, açısal momentumun da korunduğunu görebilir:

Genel görelilikte

Yerçekimi ihmal edilemez olduğunda ya da herhangi bir koordinat sistemi kullanıldığında, stres enerjisinin ıraksaması yine kaybolur. Fakat bu durumda eşdeğişkin türevi içeren ıraksamanın koordinatsız tanımı kullanılır.

Burada kullanılan Christoffel sembolüdür ve yerçekimsel güç alanını temsil eder.

Bu nedenle, eğer herhangi bir yıpratıcı vektör alanı ise, bu vektör alanı ile üretilmiş simetrinin korunum yasası şu şekilde gösterilebilir;

Bu denklemin integral formu şu şekildedir;

Genel görelilikte

Genel görelilikte, simetrik stres tensörü uzay zamanı eğriliğinin kaynağı gibi davranır ve genel eğrileştirilmiş koordinat dönüşümü olan yerçekiminin yerelleştirilmiş bakışım dönüşümüyle ilgili mevcut özkütlesidir. (Eğer burulma varsa, tensör simetrik değildir. Bu Einstein-Cartan yerçekim teorisindeki sıfırdan farklı spin tensörü durumuna denk gelmektedir.)

Genel görelilikte, özel görelilikteki kısmi türevler eşdeğişkin türevlerle yer değiştirir. Bu devamlılık denkleminin bundan böyle tensör tarafından açıklanan yerçekimsel olmayan enerji ve momentumun tamamen korunmasını açıklamadığı anlamına gelir. Başka bir ifadeyle yerçekimsel alan cisim üzerinde iş yapabilir ve tam tersi de mümkündür. Bu durum Newton yerçekiminin klasik sınırlamasında basit bir yorumlamaya sahiptir: enerji tensörün dahil edilmediği yerçekimi potansiyel enerjisi ile değişmektedir ve momentum alandan diğer cisimlere transfer edilmektedir. Genel görelilikte Landau-Lifshitz pseudotensörü yerçekimsel alan enerjisini ve momentum yoğunluklarını açıklamak için eşsiz bir yöntemdir. Bu tür bir stres enerjisi pseudotensörü koordinat dönüşümü ile lokal olarak yok olmak için yapılabilir.

Kavisli uzay zamanında, uzaysal integral genel olarak uzaysal dilime bağlıdır. Genel kavisli uzay zamanında küresel enerji-momentum vektörünü tanımlamanın hiçbir yolu yoktur.

Einstein alan denklemleri

Genel görelilikte, stres tensörü Einstein alan denklemleri konusu içinde işlenir ve şu şekilde yazılır;

Burada Ricci tensörü, Ricci skaleri (Ricci tensörünün tensör kasılması), metrik tensör ve evrensel kütleçekim sabitidir.

Özel durumlarda stres enerjisi

Yalıtılmış parçacık

Özel görelilikte, m’’ kütlesine sahip ve etkileşimsiz parçacığın stres enerjisi ve yörüngesi şu şekildedir;

Burada hız vektörüdür (dört-hızı ile karıştırılmamalıdır)

Burada δ Dirac delta fonksiyonudur ve parçacığın enerjisidir.

Dengedeki bir sıvının stres enerjisi

Termodinamik dengedeki bir sıvı için stres tensör enerjisi aşağıdaki basit formu alır;

Burada kütle energy yoğunluğu (metre küp başına kilogram), hidrostatik basınç (paskal), sıvının dört hızı ve metrik tensörün tersidir.

Dört hızı aşağıdakini karşılar;

Sıvının uygun referans çerçevesinde, dört hızı;

'dır.

metrik tensörün tersi;

ve stress enerji tensörü köşegen matris olarak;

Elektromanyetik stres enerji tensörü

Kaynaksız bir elektrik alanın Hilbert stres enerji tensörü şu şekildedir;

Burada elektromanyetik alan tensörüdür.

Skalar alan

Skalar alan için Klein-Gordon denklemini sağlayan stres enerji tensörü şu şekildedir;

Stres enerjisinin değişken tanımları

Yerçekimsel olmayan stres enerjisinin eş olmayan birçok tanımı vardır:

Hilbert stress enerjisi tensörü

İşlevsel türev olarak tanımlanmıştır;

Burada eylemin Lagrangian yoğunluğunun yerçekimsel olmayan kısmıdır. Simetrik ve değişmez ölçektedir.

Standart stres enerjisi tensörü

Noethern teoremine göre uzay ve zaman içinde öteleme ile ilişkili korunmuş bir akım vardır. Buna standart stres enerjisi tensörü denir. Genel olarak, simetrik değildir ve eğer elimizde bir ölçü teoremi varsa, bu ölçü sabiti olmayabilir çünkü uzaya bağlı ölçü dönüşümleri mekansal ötelemelerle değişmeyebilir.

Genel görelilikte, ötelemeler koordinat sistemine göredir ve bu yüzden eşdeğişkin olarak dönüşmez.

Belinfante-Rosenfeld stres enerjisi tensörü

Esas açısal momentumda ya da fırılın varlığında, standart Noether stres enerji tensörü simetrik değildir. Belifante-Rosenfeld stres enerji tensörü standar stres enerji tensörü ve fırıl akımı tarafından oluşturulmuştur ve bu durumda hem simetrik hem de korunmuştur. Genel görelilikte, bu modifiye edilmiş tensör Hilbert stres enerji tensörü ile uyuşmaktadır.

Yerçekimsel stres enerjisi

Yerçekimsel stres enerjisinin eşdeğerlik prensibine göre seçilmiş bir çerçevede seçilmiş bir nokta her zaman lokal olarak kaybolacaktır. Bu nedenle, yerçekimsel stres enerjisi sıfırdan farklı bir tensör olarak tanımlanamaz, bunun yerine pseudotensör kullanmak zorundayız.

Genel görelilikte, yerçekimsel stres enerji-momentum pseudotensörünün birçok olası farklı tanımı mevcuttur. Buna Einstein pseudotensörü ve Landau-Lifshıtz pseudotensörü de dahildir. Landau-Liftshitz pseudotensörü düzgün bir koordinat sistemi seçildiği takdirde uzay zamandaki herhangi bir olayda sıfıra indirgenebilir.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Del işlemcisi</span>

Yöney analizinde del işlemcisi, 3 boyutlu Kartezyen koordinatlarda nabla işlemcisine denk gelir ve simgesiyle gösterilir.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

Einstein alan denklemleri ya da Einstein denklemleri, yüksek hız ve büyük kütlelerde geçerli olan uzayzamanın geometrisi ile enerji ve momentum dağılımını ilişkilendiren doğrusal olmayan diferansiyel denklemler kümesidir. Einstein, bu denklemleri ilk kez 1915 yılında yayımlamıştır.

Uzayzamanda 2 nokta düşünelim ve

<span class="mw-page-title-main">Beta dağılımı</span>

Olasılık kuramı ve istatistikte, beta dağılımı, [0,1] aralığında iki tane pozitif şekil parametresi ile ifade edilmiş bir sürekli olasılık dağılımları ailesidir. Çok değişkenli genellemesi Dirichlet dağılımıdır.

Grashof sayısı akışkanlar dinamiği ve ısı transferinde kullanılan boyutsuz bir sayıdır. Sık sık doğal taşınımı içeren konularda ortaya çıkar. Adını Alman mühendis Franz Grashof'tan alır.

dikey düz yüzeyler için
borular için
kaba cisimler için
g = yerçekimi ivmesi
β = genleşme katsayısı
Ts = yüzey sıcaklığı
T = ortam sıcaklığı
L = uzunluk
D = çap
ν = kinematik viskozite

Yılmaz kütleçekim kuramı, Türk teorik fizikçi Hüseyin Yılmaz (1924-2013) tarafından ortaya atılan ve daha sonra birkaç kişinin de birlikte katkı verdiği, düşük çekimli alanlarda Einstein'ın genel görelilik kuramı ile örtüşen ancak olay ufkuna izin vermeyen dolayısıyla da karadelik içermeyen klasik alanlı bir çekim kuramıdır.

<span class="mw-page-title-main">Ayar teorisi</span> Fizikte bir teori

Ayar teorisi veya ayar kuramı, kuramsal fizikte temel etileşmeleri açıklar. Türkçede bazen yerelleştirilmiş bakışım kuramı olarak da geçer.

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

Lorentz faktörü veya Lorentz terimi bir cismin herhangi bir hıza sahip olmadığı durumla bir hıza sahip olması sırasında kütle, zaman ve uzay ölçümlerinde oluşacak ölçüm farklılıklarını açıklayan niceliktir. Lorentz faktörü, referans çerçeveleri arasında dönüşüm yapılabilmesini sağlayan Lorentz dönüşümünden doğar. Faktör, Lorentz elektrodinamiği içindeki erken görünümü yüzünden Hollandalı fizikçi Hendrik Lorentz adına ithaf edilmiştir.

<span class="mw-page-title-main">Sicim kozmolojisi</span>

Sicim kozmolojisi, ilk kozmolojinin sorularını sicim kuramındaki eşitlikleri uygulayarak çözmeye çalışan yeni bir alandır.Çalışmaların bağlantılı bölgesi brane kozmolojisidir. Bu yaklaşım sicim kuramının şişme kozmolojik modelinden türetilebilir, bu sayede ilk büyük patlama senaryolarına kapı açılmıştır. Fikir, eğimli bir arka planda bozonik sicim özelliği ile bağlantılıdır, düzgün olmayan sigma modeli olarak bilinir. Bu modelin ilk işlemleri beta işlevi olarak gösterilir, modelin sürekli ölçünü bir enerji düzeyinin işlevi olarak nitelendirir, Ricci tensörü ile orantılı olmakla birlikte Ricci akışına da mahal vermiştir. Bu model konformal değişmeze sahip olduğundan mantıklı bir kuantum alan kuramı olarak tutulmalı, beta işlevi ise ardından, hemen sıfır üreten Einstein alan eşitliği olmalıdır. Einstein’ın eşitlikleri bir şekilde yersiz görünse de, bu sonuç kesinlikle iki-boyutlu modelin daha fazla boyutlu fizik üretebileceğini göstermesi açısından dikkat çekicidir. Buradaki ilgi çekici nokta ise sicim kuramı gereksinim olmasa da düz bir arka plandaki tutarlıkla 26 boyut olarak formulize edilebilir. Bu Einstein’ın eşitliklerinin altında yatan fiziğin konformal alan kuramı ile açıklanabileceğine dair ciddi bir ipucudur. Aslında, bu sicim kozmolojisi için şişmeci bir evrene sahip olduğumuza dair bir kanıtımız olduğuna işarettir.Evrenin evriminde, şişme evresinden sonra, bugün gözlemlenen genişleme Firedmann eşitliklerinde tam anlamıyla tanımlanmıştır. İki farklı evre arasında pürüzsüz bir geçiş beklenir. Sicim kozmolojisi, geçişi açıklamakta zorluk çeker. Bu sözlükte zarif çıkış problemi olarak bilinir. Şişmeci kozmoloji skaler alanın varlığının şişmeyi zorladığını ima eder. Sicim kozmolojisinde bu durum dilaton alanına mahal verir.. Bu skaler ifade, düşük enerjilerin efektif kuramı olan skaler alanın bozonik sicimin tanımına girer. Bu eşitlikler Brans-Dicke kuramındakilere benzer. Nicel çözümlenimler boyutların kritik sayısını, (26), dörde düşürmeye çalışır. Genel olarak, Friedmann eşitliklerinden rastgele sayıda boyut elde edilebilir. Başka bir durum ise boyutların kesin sayısı etkili dört boyut kuramı ile çalışarak sıkıştırılmış evrenleri üretir. Sıkıştırılmış boyutlarda skaler alanların oluştuğu Kaluza-Klein kuramı buna bir örnektir. Bu alanlara modili denir.

Dalga vektörü, fizikte dalgayı ifade etmemize yardımcı olan vektördür. Herhangi bir vektör gibi, yöne ve büyüklüğe sahiptir. Büyüklüğü dalga sayısı ve açısal dalga sayısıdır. Yönü ise genellikle dalga yayılımının yönüdür. İzafiyet kuramında, dalga vektörü, aynı zamanda dört vektör olarak tanımlanabilir.

<span class="mw-page-title-main">Elektromanyetizmanın eşdeğişim formülasyonu</span>

Klasik manyetizmanın eşdeğişimli formülasyonu klasik elektromanyetizma kanunlarının(özellikle de, Maxwell denklemlerini ve Lorentz kuvvetinin) Lorentz dönüşümlerine göre açıkça varyanslarının olmadığı, rektilineer eylemsiz koordinat sistemleri kullanılarak özel görelilik disiplini çerçevesinde yazılma sekillerini ima eder. Bu ifadeler hem klasik elektromanyetizma kanunlarının herhangi bir eylemsiz koordinat sisteminde aynı formu aldıklarını kanıtlamakta kolaylık sağlar hem de alanların ve kuvvetlerin bir referans sisteminden başka bir referans sistemine uyarlanması için bir yol sağlar. Bununla birlikte, bu Maxwell denklemlerinin uzay ve zamanda bükülmesi ya da rektilineer olmayan koordinat sistemleri kadar genel değildir.

Einstein-Hilbert etkisi genel görelilikte en küçük eylem ilkesi boyunca Einstein alan denklemleri üretir. Hilbert etkisi genel görelilikte yerçekiminin dinamiğini tarifleyen fonksiyonel işlemdir. metrik işaretiyle, etkinin çekimsel kısmı,

Differansiyal geometri içerisinde,. gerçek olmayan Riemannia çok katlılarını ifade etmek için kullanılan eğriliktir. Genel Görelikte içerisinde, Einstein Tensör’ünün ortaya çıkardığı Einstein’nın alan denklemlerinin kütleçekimi için tanımladığı uzay-zaman eğriliğini tutarlı bir şekilde enerji ile açıklamasıdır.

Teorik fzikte, Nordstrom kütleçekim kanunu genel göreliliğin bir öncülüdür. Açıkçası, Fin’li teorik fizikçi Gunnar Nordström tarafından 1912 de ve 1913 te önerilen iki ayrı teori vardır. Bunlardan ilki, hızla geçerliliğini yitirmiş, ancak ikinci, yerçekimi etkileri kavisli uzay-zaman geometrisi bakımından tamamen kabul eden. kütleçekim metrik teorisinin bilinen ilk örneği olmuştur. Nordstrom teorilerinin hiçbiri gözlem ve deney ile uyum içinde değildir. Bununla birlikte, ilkinin kısa sürede üzerindeki ilgiyi kaybetmesi, ikinciyi de etkilemiştir. İkinciden geriye kalan, kütleçekim kendine yeten relativistik teorisi. Genel görelilik ve kütleçekim teorileri için temel taşı niteliği görevi görmektedir. Bir örnek olarak, bu teori, pedagojik tartışmalar kapsamında özellikle yararlıdır.

Nötrino salınımları, üretilen ve belirli bir lepton türü olan bir nötrinonun daha sonradan farklı bir tür olarak ölçülebilmesine denen bir kuantum mekaniği fenomenidir. Uzaya yayılan nötrinoların türleri periyodik olarak değişir.

<span class="mw-page-title-main">Dize titreşimi</span>

Bir dizedeki (tel) [[titreşim]] bir ses dalgasıdır. Rezonans titreşen bir dizenin sabit frekanslı, yani sabit perdeli bir ses üretmesine neden olur. Telin uzunluğu veya gerginliği doğru şekilde ayarlanırsa üretilen ses bir [[müzik tonu]] olur. Titreşimli teller gitar, [[Viyolonsel|çello]] ve piyano gibi yaylı çalgıların temelini oluşturur.

Akışkanlar mekaniğinde, Rayleigh sayısı (Ra, Lord Rayleigh'e ithafen) bir akışkan için kaldırma kuvveti ilişkili bir boyutsuz sayıdır. Bu sayı, akışkanın akış rejimini karakterize eder: belirli bir alt aralıkta bir değer laminer akışı belirtirken, daha yüksek bir aralıktaki değer türbülanslı akışı belirtir. Belirli bir kritik değerin altında, akışkan hareketi olmaz ve ısı transferi konveksiyon yerine ısı iletimi ile gerçekleşir. Çoğu mühendislik uygulaması için Rayleigh sayısı büyük olup, yaklaşık 106 ile 108 arasında bir değerdedir.

MS 2. yüzyılda Mısır'da Yunan astronom, coğrafyacı ve jeolog Batlamyus tarafından oluşturulan kirişler tablosu, matematiksel astronomi üzerine bir inceleme olan Batlamyus'un Almagest adlı eserinin Kitap I, bölüm 11'inde yer alan bir trigonometrik tablodur. Esasen sinüs fonksiyonunun değer tablosuna eşdeğerdir. Astronomi de dahil olmak üzere birçok pratik amaç için yeterince kapsamlı olan en eski trigonometrik tablodur. 8. ve 9. yüzyıllardan beri sinüs ve diğer trigonometrik fonksiyonlar, İslam matematiği ve astronomisinde kullanılmış ve sinüs tablolarının üretiminde reformlar yapılmıştır. Daha sonra Muhammed ibn Musa el-Harezmi ve Habeş el-Hâsib bir dizi trigonometrik tablo üretmiştir.