İçeriğe atla

Stokes akışı

Stokes Akışı George Gabriel Stokes tarafından geliştirilmiştir. Aynı zamanda sürünme akışı[1] olarak da adlandırılır. Bu akışlar, advektif Atalet kuvvetlerinin viskoz kuvvetlere göre küçük olduğu akışlardır.[2] Adveksiyon, herhangi bir dinamik davranışta korunan değerlerin parçacıklar veya sistemler arasındaki kütlesel hareket ile taşınımıdır. Atalet kuvvetlerinin küçük olması ise hareketlerin düşük hızlı olduğunu ifade eder. Bunlara bağlı olarak Stokes Akışları Reynolds Sayısının küçük olduğu akışlardaki basitleştirilmiş modeldir. Bu tipik durumun olduğu akışlarda hız oldukça yavaştır ve viskozite çok yüksektir veya karakteristik uzunlukların oranı küçüktür. Sürünme akışı ilk olarak göreceli hareketin küçük olduğu veya statik olan mekanik parçaların yağlanmasında incelenmiştir. Ayrıca bu akış doğada mikroorganizmaların akışkanlar içindeki hareketlerinde gözlenir. Teknolojide ise MEMS’de ve polimerlerde bu akış görülebilir.

Stokes Akışı Stokes Denklemleri ile modellenir. Navier-Stokes denklemlerinin yukarıdaki kabuller ve basitleştirmeler ile doğrusallaştırılmasıdır. Dolayısıyla birçok diferansiyel denklem çözme metodu ile analitik olarak çözülebilir. Yapısı gereği, Green fonksiyonları ile çözülebilir.

Noktasal kuvvetleri temel alarak ilerleyen genel çözüm ise ilk olarak Lorentz tarafından 1896’da üretilmiştir. Bu çözüm Stokeslet adında bilinmektedir.[3]

Stokes Denklemleri

Stokes akışlarındaki hareket denklemleri yukarıda belirtildiği üzere zamana göre durgun Navier Stokes Denklemleri’nin doğrusallaştırılması ile bulunabilir. Atalet kuvvetleri, viskoz kuvvetlere göre çok küçüktür ve Navier-Stokes denklemlerindeki advektif enerji değişimi terimleri (ısı taşınımı gibi)nin iptal edilmesi ile atalet terimlerinin çıkarılması; bize sadece momentum dengesini bırakır;

Burada , Cauchy stress tensörünü ifade eder.[4][5] Bu, akışkan moleküllerini sürekli ortamlar mekaniğine bağlı olarak paketlediğimizde; yüzeylerdeki stressleri, etkileşim kuvvetlerini, dış kuvvetleri ve basınçları genel olarak ifade eder. Ayrıca, bu denklemler kütle korunumunu da içerir;

akışkanın özkütlenin, ise hızını ifade eder. Sıkıştırılamaz akışların hareket denklemlerini bulmak için, özkütlenin sabit olduğunu kabul etmek gerekir.

Ayrıca, zamana göre durgun olmayan Stokes akışlarında, momentum dengesinde sol tarafa teriminin eklenmesi ile tam model elde edilebilir. (Euler’in akış modelinden de bilineceği üzere, özkütle, hız ve hareket değişiminden ötürü değişecektir.)

Stokes Paradoksu

Stokes akışının ilginç bir özelliği şudur; 2 boyutlu bir disk etrafında Stokes akışı olamaz. Veya buna denk olarak, Stokes akışının sonsuz uzunluktaki bir silindir etrafında çözümü yoktur.[6]

Özellikler

Taylor–Couette vorteksleri, Re=950

Stokes denklemleri Navier-Stokes denklemlerinin birçok akış tipini ifade edebilecek önemli bir basitleştirilmesidir. Özellikle sıkıştırılamaz Newton uyumlu akışkanlarda kullanılır. Buradaki en önemli basitleştirme Reynolds Sayısının sıfıra yaklaşmasıdır. Dolayısıyla, Navier-Stokes denklemlerinin normalleştirilmiş ve boyutsuzlaştırılmış formlarında bunu yaparak Stokes denklemlerini bulabiliriz.

Stokes denklemlerinde sınır koşulları verildiyse, akış zamana göre sürekli bir şekilde çözülebilir ve başka bir zamandaki akış bilgisine gerek yoktur. Yani tek bir sınır bilgisi çözüm için yeterlidir. (Doğrusal diferansiyel denklemlerde, sınır bilgileri yerine, ilk bilgilerin verilmesi yeterlidir) Aynı zamanda, zamana göre tersi alınmış Stokes denklemleri, alınmamış olanlarla aynı sonuçları verir. (Time-reversibility) Bu da Stokes akışlarındaki simetriden bahseder. Bu özellik kullanılarak çözümler basitleştirilebilir ve denklemleri tamamen çözmeye gerek kalmadan sonuçlar elde edilebilir. Buna bir örnek Taylor-Couette akışı ile verilebilir.

Kaynakça

  1. ^ Kim, S. & Karrila, S. J. (2005) Microhydrodynamics: Principles and Selected Applications, Dover. ISBN 0-486-44219-5.
  2. ^ Kirby, B.J. (2010). Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press. ISBN 978-0-521-11903-0. 28 Nisan 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 30 Aralık 2015. 
  3. ^ Chwang, A. and Wu, T. (1974). "Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows" 7 Mart 2012 tarihinde Wayback Machine sitesinde arşivlendi.. J. Fluid Mech. 62(6), part 4, 787–815.
  4. ^ Batchelor, G. K. (2000). Introduction to Fluid Mechanics. 
  5. ^ Happel, J. & Brenner, H. (1981) Low Reynolds Number Hydrodynamics, Springer. ISBN 90-01-37115-9.
  6. ^ Lamb, Horace (1945). Hydrodynamics (Sixth bas.). New York: Dover Publications. ss. 602-604. 
  • Ockendon, H. & Ockendon J. R. (1995) Viscous Flow, Cambridge University Press. ISBN 0-521-45881-1.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Reynolds sayısı</span>

Akışkanlar dinamiği alanında, Reynolds sayısı, farklı durumlarda akışkan akışı desenlerini tahmin etmeye yardımcı olan bir boyutsuz sayıdır ve eylemsizlik kuvvetleri ile viskoz kuvvetler arasındaki oranı ölçer. Düşük Reynolds sayılarında, akışlar genellikle laminer akış tarafından domine edilirken, yüksek Reynolds sayılarında akışlar genellikle türbülanslı olur. Türbülans, akışkanın hız ve yönündeki farklılıklardan kaynaklanır ve bazen bu yönler kesişebilir veya akışın genel yönüne ters hareket edebilir. Bu girdap akımları, akışı karıştırmaya başlar ve bu süreçte enerji tüketir, bu da sıvılarda kavitasyon olasılığını artırır.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

<span class="mw-page-title-main">Bernoulli ilkesi</span>

Akışkanlar dinamiğinde Bernoulli prensibi, sürtünmesiz bir akış boyunca, hızda gerçekleşen bir artışın aynı anda ya basınçta ya da akışkanın potansiyel enerjisinde azalmaya neden olduğunu ifade eder. Bernoulli prensibi, adını Hollanda-İsviçre kökenli matematikçi Daniel Bernoulli'den almıştır. Bernoulli bu prensibini 1738 yılında Hydrodynamica adlı kitabında yayınlamıştır.

Akışkanlar dinamiğinde, bir sıvı tarafından çevrelenmiş ve hareket halinde olan bir cisim tarafından hissedilen sürüklenim kuvvetini bulmak için sürüklenim denklemi kullanılır. Bu formül belli koşullar altında daha tutarlı sonuçlar verir:

Akışkanlar dinamiğinde, sürüklenim bir sıvı içerisinde hareket eden bir cismin hareket yönüne zıt yönde etki eden kuvvet topluluğuna denir. Bu kuvvet iki sıvı yüzeyi arasında veya bir katı ve bir sıvı yüzeyi arasında olabilir. Diğer durdurucu kuvvetler nazaran sürüklenim kuvveti hıza bağlıdır. Bir sıvının akış yönü hizasında bulunan katı bir cisme göre, sürüklenim kuvvetleri sıvının hızını her zaman azaltır.

Dean sayısı (De), akışkanlar mekaniği alanında, özellikle eğri borular ve kanallarda meydana gelen akış dinamiklerinin incelenmesinde kullanılan bir boyutsuz sayıdır. Bu terim, Britanyalı bilim insanı William Reginald Dean'in adını taşımaktadır. Dean, laminer akış durumunda, düz bir borudaki Poiseuille akışından, çok küçük bir eğrilik içeren bir boruya kadar olan akışın teorik çözümünü bir bozulma yöntemi kullanarak ilk kez sunmuştur. Bu çalışma, eğri borulardaki akış mekaniklerinin anlaşılmasında temel bir adım olarak kabul edilir.

<span class="mw-page-title-main">D'Alembert paradoksu</span>

Akışkanlar dinamiğinde D'Alembert paradoksu veya hidrodinamik paradoks, 1752'de Fransız matematikçi Jean le Rond d'Alembert tarafından ortaya atılmıştır. D'Alembert, matematiksel olarak sıkıştırılamaz ve akmazlığın olmadığı akışlarda kullanılan ve sanal fonksiyon teorisini baz alan potansiyel teorinin önemli bir açığını keşfetmiştir. Kaldırma kuvveti ile ilgili etkili sonuçlar veren potansiyel teori kullanıldığında, üzerinde akış olan her cisim için sürüklenme kuvveti sıfır oluyordu.

<span class="mw-page-title-main">Terminal hızı</span>

Terminal hızı, bir nesnenin bir akışkanın içinde düşerken ulaşabileceği maksimum hızdır. Sürükleme kuvveti (Fd) ve kaldırma kuvvetinin toplamı, nesneye etki eden aşağı doğru yerçekimi kuvvetine (Fg) eşit olduğunda bu hıza ulaşılmaktadır. Cisim üzerindeki net kuvvet sıfır olduğundan, cismin ivmesi sıfırdır.

Fizikte Einstein ilişkisi; 1904'te William Sutherland'in, 1905'te Albert Einstein'ın ve 1906'da Marian Smoluchowski'nin Brown hareketi üzerine yaptıkları çalışmalarında bağımsız olarak ortaya koydukları önceden beklenmedik bir bağlantıdır. Denklemin daha genel biçimi:

<span class="mw-page-title-main">Jeofizik akışkan dinamiği</span>

Jeofizik akışkan dinamiği, en geniş anlamıyla, Dünya ve diğer gezegenler üzerindeki lav akıntıları, okyanuslar ve gezegen atmosferleri gibi doğal olarak meydana gelen akışların akışkan dinamiklerini ifade eder.

Cauchy sayısı (Ca), süreklilik mekaniği alanında, özellikle sıkıştırılabilir akışların çalışılmasında kullanılan boyutsuz bir niceliktir. Bu sayı, Fransız matematikçi Augustin Louis Cauchy'ye atfen adlandırılmıştır. Sıkıştırılabilirliğin önemli olduğu durumlarda, dinamik benzerlik sağlamak için elastik kuvvetler, atalet kuvvetleriyle birlikte göz önünde bulundurulmalıdır. Bu bağlamda, Cauchy sayısı, bir akış içerisindeki atalet kuvvetleri ile sıkıştırılabilirlik kuvveti arasındaki oran olarak tanımlanmakta ve şu formülle ifade edilmektedir:

,

Chandrasekhar sayısı, manyetik konveksiyon süreçlerinde, Lorentz kuvveti ile viskozite arasındaki oransal ilişkiyi ifade etmek için kullanılan bir boyutsuz nicelik olarak tanımlanır. Bu sayı, Hindistan kökenli astrofizikçi Subrahmanyan Chandrasekhar'ın adıyla anılmaktadır.

<span class="mw-page-title-main">Keulegan-Carpenter sayısı</span>

Akışkanlar dinamiği alanında, Keulegan–Carpenter sayısı, aynı zamanda periyot sayısı olarak da bilinir, salınımlı bir akışkan akışı içinde bulunan künt cisimler üzerindeki sürükleme kuvvetinin atalet kuvvetlerine göre göreli önemini belirten bir boyutsuz niceliktir. Aynı şekilde, durgun bir akışkan içinde salınan cisimler için de geçerlidir. Küçük Keulegan–Carpenter sayılarında atalet kuvvetleri baskınken, büyük sayılarda türbülans nedeniyle sürükleme kuvvetleri önem kazanır.

<span class="mw-page-title-main">Sürükleme katsayısı</span> bir nesnenin hava veya su gibi sıvı bir ortam içinde sürtünmesi ya da direnç göstermesini nicelendirmek için kullanılan boyutsuz miktar

Akışkanlar dinamiği alanında, sürükleme katsayısı, bir nesnenin hava veya su gibi bir akışkan ortamında maruz kaldığı sürükleme veya direnç miktarını belirlemek için kullanılan bir boyutsuz niceliktir. Sürükleme denkleminde kullanılır ve daha düşük bir sürükleme katsayısı, nesnenin daha az aerodinamik veya hidrodinamik sürüklemeye sahip olacağını ifade eder. Sürükleme katsayısı her zaman belirli bir yüzey alanına bağlı olarak değerlendirilir.

<span class="mw-page-title-main">Stokes sayısı</span>

Stokes sayısı (Stk), George Gabriel Stokes'un adını taşıyan ve parçacıkların bir akışkan akışı içerisinde süspansiyonda gösterdiği davranışı karakterize eden bir boyutsuz sayıdır. Stokes sayısı, bir parçacığın karakteristik zamanı ile akışın veya bir engelin karakteristik zamanı arasındaki oran olarak şu şekilde tanımlanır:

Womersley sayısı, biyoakışkan mekaniği ve biyoakışkan dinamiği alanlarında kullanılan bir boyutsuz sayıdır. Bu sayı, pulsatil akış frekansının viskoz etkilerle olan ilişkisini boyutsuz bir biçimde ifade eder. John R. Womersley (1907–1958)'in arterlerdeki kan akışı üzerine yaptığı çalışmalar nedeniyle bu adla anılmaktadır. Womersley sayısı, bir deneyin ölçeklendirilmesinde dinamik benzerlik sağlamak açısından önem taşır. Örneğin, deneysel çalışmalarda damar sisteminin ölçeklendirilmesi bu duruma örnek teşkil eder. Ayrıca, Womersley sayısı, giriş etkilerinin ihmal edilip edilemeyeceğini belirlemek için sınır tabakası kalınlığının tespitinde de önemlidir.