İçeriğe atla

Steinhaus-Moser gösterimi

Matematikte Steinhaus–Moser gösterimi, aşırı derecede büyük sayıları ifade etme anlamına gelir. Steinhaus çokgen gösteriminin genişlemesidir.

Açıklamalar

üçgendeki n
Üçgenin içindeki sayısı anlamına gelir.
karedeki n
Karenin içindeki sayısı "tümü iç içe olan tane üçgenlerin içindeki sayısı" ile eşdeğerdir."
çokgendeki n
Çokgendeki sayısı "tümü iç içe olan tane karelerin içindeki sayısı" ile eşdeğerdir.

örn.: () kenarlı çokgendeki yazısı, "tümü iç içe olan kenarlı tane çokgenin içindeki sayısı" ile eşdeğerdir. İç içe seriye sahip çokgenler, içeriye doğru birleştirilirler. İki üçgenin içindeki sayısı, sayısının kuvvetine yükselen ile eşdeğer olan bir üçgen içindeki ile eşdeğerdir.

Steinhaus sadece, üçgen, kare ve yukarıda açıklanan çokgenin eşdeğeri olan çemberdeki n çemberini tanımladı.

Özel değerler

Steinhaus şunları açıkladı:

  • mega, bir çemberdeki 2'ye eşdeğerdir: ②
  • megiston, bir çemberdeki 10'a eşittir: ⑩

Moser sayısı, "mega" kenarlı bir çokgen olan "megaton'daki 2" olarak ifade edilir.

Alternatif gösterimler:

  • kare(x) ve üçgen(x) fonksiyonlarını kullanma
  • sayısı, kenarlı tane çokgenin içindeki sayısı olarak ifade edildiğinde kurallar şöyle olur:
ve
    • mega = 
    • moser = 

Mega

Bir mega (yani ②), zaten çok büyük bir sayıdır. ② = kare(kare(2)) = kare(üçgen(üçgen(2))) = kare(üçgen(22)) = kare(üçgen(4)) = kare(44) = kare(256) = üçgen(üçgen(üçgen(...üçgen(256)...))) [256 üçgen] = üçgen(üçgen(üçgen(...üçgen(256256)...))) [255 üçgen] = üçgen(üçgen(üçgen(...üçgen(3,2 × 10616)...))) [255 üçgen] = ...

Diğer gösterimi kullanma:

mega = M(2,1,5) = M(256,256,3)

fonksiyonu ile mega = elde ederiz. Buradaki üstindis fonksiyonel kuvveti ifade eder, sayısal kuvveti değil.

Şunları elde ederiz (kuvvetlerin sağdan sola doğru değerlendirildiğine dikkat edin):

  • M(256,2,3) =
  • M(256,3,3) =

Benzer şekilde:

  • M(256,4,3) ≈
  • M(256,5,3) ≈

vb.

Buradan:

  • mega = . Buradaki , fonksiyonunun fonksiyonel kuvvetini ifade eder.

Knuth yukarı ok gösterimini kullanıp, çok kabaca yuvarlayarak (256'nın sonuna 257 koyarak) mega ≈ olarak bulunur.

Birkaç adımdan sonra değeri, her zaman yaklaşık olarak 'e eşittir. aslında yaklaşık olarak 'e bile eşit olabilir (Ayrıca çok büyük sayıların yaklaşık aritmetiğine bakınız). 10 tabanlı kuvveti kullanırsak şunu elde ederiz:

  • (, 616'ya eklenir)
  • (, ihmal edilebilir değer olan 'a eklenir. Böylece en alta sadece 10 eklenir)

...

  • mega = . Buradaki , fonksiyonunun fonksiyonel kuvvetini ifade eder. Bundan dolayı

Moser sayısı

Moser sayısı Conway dizisi ok gösteriminde şöyle kanıtlanmıştır:

,

ve Knuth yukarı ok gösteriminde:

Bu yüzden, akıl almaz büyük olmasına rağmen Moser sayısı, Graham sayısı ile kıyaslandığında çöldeki kum tanesi (veya oksayustaki bir damla su) gibidir, şöyle ki:

Ayrıca bakınız

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Üçgen</span> üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimi

Bir üçgen düzlemde birbirine doğrusal olmayan üç noktayı birleştiren üç doğru parçasının birleşimidir. Üçgene müselles ve üçbucak da denir.

<span class="mw-page-title-main">Karekök</span>

Matematikte negatif olmayan bir gerçel sayısının temel karekök bulma işlemi şeklinde gösterilir ve karesi (bir sayının kendisiyle çarpılmasının sonucu) olan negatif olmayan bir gerçek sayıyı ifade eder.

Çokgen, düzlemde herhangi ardışık üçü doğrusal olmayan n tane noktayı ikişer ikişer birleştiren doğru parçalarının oluşturduğu kapalı şekillerdir.

<span class="mw-page-title-main">Googolplex</span> sayı

Googolplex,  sayısına verilen isimdir.

<span class="mw-page-title-main">Kütle çekimi sabiti</span> nesneler arasındaki yerçekimi kuvvetini kütleleri ve mesafeleriyle ilişkilendiren fiziksel sabit

Kütleçekim sabiti MKS sisteminde yaklaşık 6,67x10ˉ¹¹ değerine sahiptir ve de G harfi ile gösterilir.

Olasılık kuramında ve istatistikte, hipergeometrik dağılım sonlu bir ana kütle içinden tekrar geri koymadan birbiri arkasına n tane nesnenin çekilmesi işlemi için başarı sayısının dağılımını bir ayrık olasılık dağılımı şekilde betimler.

<span class="mw-page-title-main">Poisson dağılımı</span>

Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.

Olasılık teorisi ya da ihtimaliyet teorisi rastgele olayların analizi ile ilgilenen bir matematik bilim dalıdır. Olasılık teorisinin ana ögeleri rassal değişkenler, saf rassal süreçler, olaylar olarak sayılabilir. Bunlar ya tek olarak ortaya çıkan veya bir zaman dönemi içinde gelişerek meydana gelen, ilk görünüşü rastgele bir şekilde olan deterministik olmayan olayların veya ölçülebilir miktarların matematiksel soyutlamalarıdır. Bir madeni parayı yazı-tura denemesi için havaya atmak veya bir zarı atmak ile ortaya çıkan sonuç ilk bakışta rastgele bir olay olarak görülebilirse bile eğer birbirini takip eden rastgele olaylar tekrar tekrar ortaya çıkartılırsa incelenebilecek ve tahmin edilebilecek belirli bir istatistiksel seyir takip ettikleri görülecektir. Bu türlü olaylar ve sonuçların seyirlerini betimleyen iki temsilci matematiksel sonuç büyük sayılar yasası ve merkezsel limit teoremidir.

Fizikte Planck uzunluğu (ℓP), Planck birimleri olarak bilinen doğal birimler sisteminde uzunluk birimidir ve vakumda ışık hızı ile Planck zamanı çarpımına eşittir.

Doğum günü akını, olasılık kuramındaki doğum günü probleminin ardındaki matematiği kullanan bir kriptografik akındır. Akının amacı bir f işlevine girdi olarak verilen ve 'nin koşulunu sağlamasıdır. Böyle bir ikilisi çakışma olarak adlandırılmaktadır. Çakışma bulma yöntemi, f işlevini gelişigüzel girdilerle hesaplayıp çakışma koşulunun sağlanıp sağlanmadığını incelemektir. Bu yöntem, yukarıda sözü edilen doğum günü probleminden yararlanır. Şöyle ki; bir işlevi eşit olasılıklı farklı sonuç üretiyorsa ve yeterince büyükse koşulunu sağlayan ve değerleri kolayca bulunabilir.

<span class="mw-page-title-main">Radyasyon</span> Uzayda hareket eden dalgalar veya parçacıklar

Radyasyon veya ışınım, elektromanyetik dalgalar veya parçacıklar biçimindeki enerji yayımı ya da aktarımıdır. "Radyoaktif maddelerin alfa, beta, gama gibi ışınları yaymasına" veya "Uzayda yayılan herhangi bir elektromanyetik ışını meydana getiren unsurların tamamına" da radyasyon denir. Bir maddenin atom çekirdeğindeki nötronların sayısı, proton sayısına göre oldukça fazla veya oldukça az ise; bu tür maddeler kararsız bir yapı göstermekte ve çekirdeğindeki nötronlar alfa, beta, gama gibi çeşitli ışınlar yaymak suretiyle parçalanmaktadırlar. Çevresine bu şekilde ışın saçarak parçalanan maddelere radyoaktif madde denir.

Büyük sayılar, gündelik yaşamda normalde kullanılmayan büyük sayıları ifade eder. Terim genellikle büyük pozitif tam sayıları veya daha genel anlamda büyük pozitif reel sayıları belirtir. Fakat, diğer anlamlar için de kullanılabilir.

Knuth yukarı ok gösterimi, matematikte, çok büyük tam sayıların gösterim yöntemidir. 1976'da Donald Knuth tarafından geliştirildi. Ackermann işlevi ve özel hiperişlem serisi ile oldukça bağlantılıdır. Çarpmanın, tekrarlı hiperişlem olarak tekrarlı toplama ve üs alma gibi görülebilmesi fikrine dayanır. Bu durumu devam ettirme tekrarlı üssü (tetrasyonu) ve çoğunlukla Knuth ok gösterimi kullanılarak ifade edilen aşırı seri üretiminin geri kalanını meydana getirir.

Conway dizisi ok gösterimi, çok büyük sayıları ifade etmek için matematikçi John Horton Conway tarafından oluşturuldu. Pozitif tam sayılar serisini basitçe sağa doğru oklarla ayırarak gösterir. Örneğin, 2→3→4→5→6.

Graham sayısı, adını Ronald Graham'dan alan, Ramsey teorisindeki problemlerin çözümü için üst sınır getiren büyük bir sayıdır.

Hiperişlem, matematik'te aritmetik işlemlerin sonsuz dizisidir. Ardılın birli işlemi, ardından toplama, çarpma ve üs almanın iki işlemiyle devam eden ve ardından ikili işlemlerin ötesine geçerek serilerle ilerleyen bir işlemdir. Üstelden sonraki işlemler için bu dizinin n. elemanı Reuben Goodstein tarafından adlandırıldı. n Yunan önekinden sonra -syon son eki kullanılarak elde edilir ve Knuth yukarı ok gösterimindeki n-2 okları kullanılarak yazılabilir. Her hiperişlem, önceki terimlerin yinelemesi olarak tanımlanır. Ackermann işlevi, Knuth yukarı ok gösterimini kullanarak şöyle yinelenebilir:

Matematikte, Lambert W fonksiyonu, aynı zamanda Omega fonksiyonu veya çarpım logaritması olarak da bilinen bir fonksiyon kümesidir.

Kuantum mekaniğinde fermi enerjisi, genelde mutlak sıfır sıcaklığında etkileşimde olmayan fermiyonlardan oluşan bir kuantum sistemi içerisinde, en yüksek ve en düşük seviyede dolu vaziyetteki tek parçacık durumları arasındaki enerji farkını temsil eden bir konsepttir. Bir metalde en düşük dolu durum genelde iletken bandın altı olarak alınırken, bir fermi gazında bu durumun sıfır kinetik enerjisi olduğu kabul edilir.

<span class="mw-page-title-main">Çift merkezli çokgen</span>

Geometride, çift merkezli (bicentric) çokgen, teğet bir çokgendir ve aynı zamanda döngüsel yani kirişler dörtgenidir - yani, çokgenin her köşesinden geçen bir çevrel çember içine çizilmiştir. Tüm üçgenler ve tüm düzgün çokgenler çift merkezlidir. Öte yandan, kenarları eşit olmayan bir dikdörtgen çift merkezli değildir, çünkü hiçbir çember dört kenara da teğet olamaz.

Yineleme aralığı veya tekrar aralığı; depremler, seller, heyelanlar veya nehir deşarjları gibi olayların meydana gelmesi arasındaki ortalama süre veya tahmini ortalama süredir.