İçeriğe atla

Statik basınç

Basıncı ölçmek için kullanılan bir manometre

Akışkanlar mekaniğinde, statik basınç birçok kullanışa sahiptir.

  • • Uzay mekiğinin yapımı ve tasarımında,statik basınç uzay mekiğinin statik basınç sistemindeki hava basıncıdır.
  • • Akışkanlar dinamiğinde, birçok yazar statik basınç terimini anlam karmaşasından kaçınmak için sadece basınç yerine kullanmayı tercih ederler. Ancak,sık sık statik kelimesi atılabilir ve bir akışkandaki belirli bir noktadaki statik basınçla aynı anlamdaki basıncı kullanılır.
  • • Statik basınç terimi ayrıca akışkanlar statiğinde bazı yazarlar tarafından kullanılır.

Uzay mekiğinin yapımı ve tasarımındaki statik basınç

Bir uzay mekiğinin altimetresi statik basınç sistemi tarafından yapılır. Bir uzay mekiğinin hava hızı göstergesi statik basınç sistemi ve pitot basınç sistemi tarafından belirlenir.[1]

Statik basınç sistemi uzay mekiğinin uçtuğu rakımdaki atmosfer basıncını hissetmek için onun dışı açıktır. Bu küçük açıklığa statik port denilir. Uçuşta,hava basıncı uzay aracının dışının çevresindeki farklı konumlarda birazcık farklıdır.uzay aracı tasarımcısı statik portun konumunu dikkatli bir şekilde seçmek zorundadır. Uzay aracının uçtuğu rakımdaki atmosfer basıncına eşit olan tüm atak açıları için o hava basıncındaki bir uzay aracının dışında konumu yoktur. Basınçtaki farklılık altimetrede gösterilen rakımda ve hava süratinin göstergesi üzerinde gösterilen değerde küçük bir hataya neden olur. bu rakımda ve hava süratinde gösterilen hataya konum hatası denilir.[2][3]

Statik port için konumu ayarladığın zaman uzay aracı tasarlayıcısının nesnesi uzay aracının statik basınç sistemindeki basıncın hava sürati ve ağırlığın genişliğini belirlerken uzay aracının uçtuğu rakımdaki atmosfer basıncına mümkün olduğunca yakın olduğundan emin olmalıdır. Birçok yazar serbest akış statik basıncı olarak uzay aracının uçtuğu rakımdaki basınçtaki atmosfer basıncını tanıtır. En az bir yazar,serbest akış statik basıncını açıklamadan kaçınmak için farklı bir yaklaşım alır. Gracey,statik basıncın uzay aracının uçuş seviyesindeki atmosferik basıncı olduğunu yazdı. Gracey,yerel statik basınç olarak uzay aracına herhangi bir yakın noktadaki hava basıncını vurgulamıştır.

Akışkanlar dinamiğindeki statik basınç

Basıncın içeriği akışkanların çalışmasının merkezidir. Bir basınç akışkan bir cisimdeki herhangi bir nokta için tanımlanabilir. (akışkanların harekette olup olmamasını umursamadan). Basınç, aneroid,Bourdon tüpü,cıva sütunu ya da çeşitli diğer metotları kullanarak ölçülebilir.

Toplam basınç ve dinamik basıncının içerikleri Bernoulli denkleminden gelir ve tüm akışkanların çalışmasında önemlidir. (bu iki basınç olağan haldeki basınçlar değildir ve aneroid, Bourdon tüpü ya da cıva sütunu kullanarak ölçülemezler.) potansiyel bir karışıklıktan kaçınmak için akışkanlar dinamiğindeki basıncı ifade edildiği zaman birçok yazar onu toplam basınç ve dinamik basıncından ayırt etmek için statik basınç terimini kullanır. Statik basınç basınca benzerdir ve bir akışkan alanındaki her nokta için tanımlanabilir.

Aerodinamikte,L.J. Clancy “toplam ve dinamik basınçlarından onu ayırmak için statik basınç tanıtmak için kullanılan basınç teriminin olduğu yerde onun durumuyla alakalı ama hareketiyle alakasız olan akışkanın asıl basıncı sıklıkla statik basınç olarak ifade edilir” diye yazdı.

Bernoulli denklemi sıkıştırılamayan akışkanlar dinamiğinin temelidir. Birçok akışkanda, yükseklikteki değişimler önemlidir ve göz ardı edilebilir. Bu sadeleştirmelerle sıkıştırılamayan akışkanlar için bernoulli denklemi aşağıdaki gibi açıklanır: [4][5][6]

  • statik basınç,
  • ise dinamik basınç, genellikle  ile ifade edilir,
  •  ,akışkanın yoğunluğu,
  •  ,akışkanın hızı
  • ,aerodinamik boyunca sabit olan toplam basınç. Stagnation basıncı olarak bilinir.

Sabit biçimde akan her nokta, o noktadaki akışkanın hızının dikkatsizliği olması onun kendi statik basınca,dinamik basınca ve toplam basınca sahip olmasına neden olur. statik basınç ve dinamik basınç akışkan boyunca önemli derecede çeşitlenmesi muhtemeldir ama toplam basınç her aerodinamik boyunca sabittir. Girdapsız akışta, toplam basınç tüm aerodinamikte aynıdır ve bu yüzden akış boyunca sabittir.[7]

Bernoulli denkleminin basitleştirilmiş hali aşağıdaki kelimelerle özetlenebilir.[8][9][10]

statik basınç + dinamik basınç = toplam basınç.

Bernoulli denkleminin bu basitleştirilmiş hali gemilerin ve ses hızının %30’undan daha az olacak maksimum hızdaki düşük süratli uzay aracının yapımını ve tasarlanmasını anlamanın temelidir.

Bernoulli denklemiyle alakalı statik basınç teriminin geniş anlamının bir sonucu olarak, akışkanlar dinamiği alanındaki birçok yazar bernoulli denklemiyle direkt olarak alakalı olmayan uygulamalardaki basınçlardan statik basıncı kullanır.

İngiliz standart enstitüsü, onun standartındaki aeronotikal ifadelerin küçük sözlüğü aşağıdaki tanımı verir:

4412 Statik basıncı :Akışla hareket eden bir cisim üzerindeki bir noktadaki basınçtır.

Akışkanlar statiğindeki statik basınç

Hidrostatik basınç terimi,arada sırada akışkanın içerisinde görevlendirilen bir derinlikteki bir akışkanın basıncına karşılık gelen akışkanlar statiğind kullanılır. Akışkanlar statiğinde, akışkan her yerde sabittir ve dinamik basınç ve toplam basıncın içerikleri kabul edilemez. Sonuç olarak, basınç terimiyle ilgili biraz anlam karmaşası vardır ama bazı yazarlar bazı durumlarda statik basıncı kullanmayı seçerler.

Ayrıca bakınız

  • Pascal Kanunu
  • Durgunluk basıncı
  • Sıcaklık ve basınç için standart koşullarda

Notlar

  1. ^ Lombardo, D.A., Aircraft Systems, 2nd edition – chapter 2
  2. ^ Kermode, A.C., Mechanics of Flight, 10th Edition – page 65
  3. ^ "Of these errors the error in detection of static pressure is generally the most serious and has the special name, position error."
  4. ^ Clancy, L.J., Aerodynamics, equation 3.13
  5. ^ Hurt, H.H. Jr, (1960), Aerodynamics for Naval Aviators, page 9, A National Flightshop Reprint, Florida
  6. ^ Anderson, J.D. Jr, Fundamentals of Aerodynamics, 4th edition – page 212, McGraw-Hill, New York.
  7. ^ A.M. Kuethe and J.D. Schetzer (1959), Foundations of Aerodynamics, Section 3.5 (2nd edition), John Wiley & Sons, Inc.
  8. ^ Clancy, L.J., Aerodynamics, Section 3.5
  9. ^ ”The total pressure is composed of two parts, the static pressure and the dynamic pressure”.
  10. ^ "NASA's guide to Bernoulli's Equation". 31 Mayıs 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Mayıs 2016. 

Kaynakça

Uçak tasarımı ve işletimi

Akışkanlar Dinamiği

  • Clancy, L. J. (1975), Aerodinamik, Pitman Publishing Limited, London ISBN 0-273-01120-0
  • Streeter, V. L. (1966), Akışkanlar Mekaniği, McGraw-Hill, New York

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Akışkanlar mekaniği</span>

Akışkanlar mekaniği, akışkanların davranışlarını ve onlara etkiyen kuvvetleri inceleyen fizik dalı. Makine, inşaat, kimya ve biyomedikal gibi mühendislik dallarının yanı sıra jeofizik, okyanus bilimi, meteoroloji, astrofizik ve biyoloji gibi farklı birçok disiplinde kullanılır.

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Kanat</span> hayvan ya da cansız bir objenin uçmasını sağlayan organ ya da parça

Kanat, uçma veya hareket etme amacıyla kullanılan ve genellikle kuşlar, böcekler veya uçaklar gibi hayvanlar veya araçlar tarafından kullanılan bir yapıdır. Kanatlar, aerodinamik prensiplere dayalı olarak tasarlanmış ve şekillendirilmiştir, böylece hava akışını kontrol ederek uçuş veya hareket sağlayabilirler. Kanat belli bir evrimsel ve biyolojik süreç sonrası oluşabilmesinin yanı sıra beşeri olarak da modellenebilip uçmak veya bir sıvı içerisinde hareket sağlamak için de özelleştirilebilmektedir.

<span class="mw-page-title-main">Viskozite</span> bir sıvının fiziksel özelliği

Viskozite, akmazlık veya ağdalık, akışkanlığa karşı direnç. Viskozite, bir akışkanın, yüzey gerilimi altında deforme olmaya karşı gösterdiği direncin ölçüsüdür. Akışkanın akmaya karşı gösterdiği iç direnç olarak da tanımlanabilir. Viskozitesi yüksek olan sıvılar ağdalı olarak tanımlanırlar.

<span class="mw-page-title-main">Kanat profili</span>

Kanat profili veya aerofoil, kanat, yelken, dümen, pervane kanadı, rotor veya türbin gibi bir akışkan içindeki hareketi kaldırma kuvveti oluşturabilen nesnenin kesit şeklidir.

<span class="mw-page-title-main">Sürükleme</span>

Sürükleme; akışkanlar mekaniğinde bir cismin, bir akışkan içindeki hareketine gösterdiği direnç. Sürükleme İngilizce drag sözcüğüne atfen "D" harfi ile gösterilir.

<span class="mw-page-title-main">Aerodinamik</span> Fizik terimi ve bilim dalı

Aerodinamik, hareket eden katı kütlelerin havayla etkileşimlerini inceleyen bilim dalıdır. Aerodinamik sözcüğü Yunancadan gelmiş olup bu bilim dalı havanın hareketi ile ilgilidir. Parçalı olarak katı bir cisim ile irtibata geçmiş olması, havanın hareketi ve uçağın kanadı gibi, buna örnek olarak gösterilebilir. Aerodinamik akışkan dinamiği ve gaz dinamiğinin bir alt dalıdır ve aerodinamiğin birçok bakış açısı, teorisi bu alanlarda ortaktır. Aerodinamik genellikle gaz dinamiği için kullanılır; gaz dinamiğinin aerodinamikten farkı, tüm gazlar için çalışması ve aerodinamik gibi yalnızca hava ile sınırlanmamış olmasıdır.

<span class="mw-page-title-main">Torricelli kanunu</span>

Torricelli yasası, bir kaptaki sıvının çıkış hızının, sıvı yüksekliğiyle ilişkisini açıklayan, akışkanlar dinamiği yasasıdır. Bu yasa akmaz olmayan sıvılar için geçerlidir.

<span class="mw-page-title-main">Hidrostatik</span>

Akışkan statiği ya da hidrostatik, hareketsiz akışkanlar üzerinde çalışmalar yapan akışkan mekaniğinin dalı. Hangi akışkanların durağan dengede hareketsiz kaldığıyla ilgili yapılan çalışmaları kabul eder ve akışkan dinamiğiyle karşılaştırıldığında hareket halindeki akışkanları inceler.

<span class="mw-page-title-main">Bernoulli ilkesi</span>

Akışkanlar dinamiğinde Bernoulli prensibi, sürtünmesiz bir akış boyunca, hızda gerçekleşen bir artışın aynı anda ya basınçta ya da akışkanın potansiyel enerjisinde azalmaya neden olduğunu ifade eder. Bernoulli prensibi, adını Hollanda-İsviçre kökenli matematikçi Daniel Bernoulli'den almıştır. Bernoulli bu prensibini 1738 yılında Hydrodynamica adlı kitabında yayınlamıştır.

<span class="mw-page-title-main">Durma noktası</span>

Durma noktası, bir akış alanında yerel hızın sıfır olduğu noktadır. Durgun noktalar, bir akış alanı içindeki objelerin yüzeyinde akışın kesildiği yerlerde oluşur. Bernoulli denklemi, belirli bir akış alanı içinde, akış hızının sıfır olduğu durumda statik basıncın maksimum olduğunu gösterir ve bu nedenle statik basınç durgun noktalarda maksimumdur. Bu statik basınca durma basıncı denir.

Hesaplamalı akışkanlar dinamiğinde (HAD), SIMPLE algoritması, Navier-Stokes denklemleri'nin çözümünde sıklıkla kullanılan bir sayısal yöntem. SIMPLE, İngilizce Semi-Implicit Method for Pressure Linked Equations'ın kısaltmasıdır, Türkçe karşılığı Basınca Bağlı Denklemler için Yarı Kapalı Yöntem'dir.

<span class="mw-page-title-main">Pitot tüpü</span>

Pito tüpü veya pitot tüpü, bir akışkanın yarattığı toplam basıncı ve buna bağlı olarak akışkanın hızını ölçen cihaz. Özellikle hava araçlarında yaygın olarak kullanılan pito tüpü, statik sistemle birlikte dinamik basıncın işarî sürate çevrilmesinde kullanılır. Adını mucidi Fransız mühendis Henri Pitot'dan almıştır.

<span class="mw-page-title-main">Akışkanlar mekaniği tarihi</span>

Akışkanlar mekaniğinin tarihi, fizik ve mühendislik tarihinin temel bir koludur. Akışkanların hareketi ve onlara etki eden kuvvetlerin incelenmesi tarih öncesine kadar uzanmaktadır. İnsanın suya bağımlılığı, meteorolojik koşullar ve iç biyolojik süreçler nedeniyle sürekli bir evrim geçirmiştir.

Stokes Akışı George Gabriel Stokes tarafından geliştirilmiştir. Aynı zamanda sürünme akışı olarak da adlandırılır. Bu akışlar, advektif Atalet kuvvetlerinin viskoz kuvvetlere göre küçük olduğu akışlardır. Adveksiyon, herhangi bir dinamik davranışta korunan değerlerin parçacıklar veya sistemler arasındaki kütlesel hareket ile taşınımıdır. Atalet kuvvetlerinin küçük olması ise hareketlerin düşük hızlı olduğunu ifade eder. Bunlara bağlı olarak Stokes Akışları Reynolds Sayısının küçük olduğu akışlardaki basitleştirilmiş modeldir. Bu tipik durumun olduğu akışlarda hız oldukça yavaştır ve viskozite çok yüksektir veya karakteristik uzunlukların oranı küçüktür. Sürünme akışı ilk olarak göreceli hareketin küçük olduğu veya statik olan mekanik parçaların yağlanmasında incelenmiştir. Ayrıca bu akış doğada mikroorganizmaların akışkanlar içindeki hareketlerinde gözlenir. Teknolojide ise MEMS’de ve polimerlerde bu akış görülebilir.

<span class="mw-page-title-main">Rüzgar türbini aerodinamiği</span>

Rüzgarın enerjisi, rüzgar türbininin dönen kanatlarına rüzgarın uyguladığı aerodinamik kuvvetler yoluyla türbinin alternatöründe elektrik enerjisine çevrilir. Bu nedenle aerodinamik hesaplamalar rüzgar türbininde önemlidir. Çoğu makine gibi rüzgar türbinleri de hepsi farklı enerji kazanım kavramlarına dayanır.

<span class="mw-page-title-main">Jeofizik akışkan dinamiği</span>

Jeofizik akışkan dinamiği, en geniş anlamıyla, Dünya ve diğer gezegenler üzerindeki lav akıntıları, okyanuslar ve gezegen atmosferleri gibi doğal olarak meydana gelen akışların akışkan dinamiklerini ifade eder.

<span class="mw-page-title-main">Sürükleme katsayısı</span> bir nesnenin hava veya su gibi sıvı bir ortam içinde sürtünmesi ya da direnç göstermesini nicelendirmek için kullanılan boyutsuz miktar

Akışkanlar dinamiği alanında, sürükleme katsayısı, bir nesnenin hava veya su gibi bir akışkan ortamında maruz kaldığı sürükleme veya direnç miktarını belirlemek için kullanılan bir boyutsuz niceliktir. Sürükleme denkleminde kullanılır ve daha düşük bir sürükleme katsayısı, nesnenin daha az aerodinamik veya hidrodinamik sürüklemeye sahip olacağını ifade eder. Sürükleme katsayısı her zaman belirli bir yüzey alanına bağlı olarak değerlendirilir.

Akışkanlar dinamiği alanında, kaldırma katsayısı, bir kaldırma gövdesi tarafından üretilen kaldırma kuvvetini, gövde etrafındaki akışkan yoğunluğuna, akışkan hızına ve ilgili referans alanına bağlayan bir boyutsuz niceliktir. Kaldırma gövdesi, bir kanat profili veya sabit kanatlı uçak gibi komple bir profil taşıyan gövde olabilir. CL, gövdenin akışa olan hücum açısı, Reynolds sayısı ve Mach sayısının bir fonksiyonudur. Kesit kaldırma katsayısı cl, bir iki boyutlu profil kesitinin dinamik kaldırma özelliklerini ifade eder ve referans alan yerine veter hattı kullanılır.

Akışkanlar dinamiği alanında, basınç katsayısı bir boyutsuz sayı olup, bir akış alanındaki bağıl basınçları ifade eder. Basınç katsayısı, aerodinamik ve hidrodinamik çalışmalarında kullanılmaktadır. Her bir akış alanında, her konumsal noktanın kendine özgü bir basınç katsayısı, Cp değeri bulunmaktadır.