İçeriğe atla

Standart normal dağılım tablosu

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
.1 .0398 .0438 .0478 .0517 .0557 .0596 .0606 .0606 .0714 .0753
.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224
.6 .2257 .2291 .2224 .2357 .2389 .2422 .2454 .2486 .2517 .2549
.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852
.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133
.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986
3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990
3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993
3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995
3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997
3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998

Okunuşu

  • 0.5, .5 şeklinde yazılabilir. 0.9, .9 şeklinde yazılabilir. 0.59, .59 şeklinde yazılabilir.
  • Standart normal dağılıma dönüştürülen bir normal dağılımın P(Z<0.59) olduğunu varsayalım. Bunun için ilk önce mavi dikey ve mavi yatay sütunlara bakmalıyız. 0.59 bu sütunlarda .5 ve .09 noktalarının (.5 + .09 = .59) kesiştiği yerde aranır. Böylece P(Z<0.59) = .2224 tür deriz.
  • Standart normal dağılıma dönüştürülen bir normal dağılımın P(Z<1.24) olduğunu varsayalım. Bunun için ilk önce mavi dikey ve mavi yatay sütunlara bakmalıyız. 1.24 bu sütunlarda 1.2 ve .04 noktalarının (1.2 + .04 = 1.24) kesiştiği yerde aranır. Böylece P(Z<1.24) = .3925 tir deriz.
  • Standart normal dağılıma dönüştürülen bir normal dağılımın P(Z>2.09) olduğunu varsayalım. Bu olasılığı tabloda arayabilmenin tek koşulu P(Z<Z0) şeklinde yazılabilmesidir. P(Z>2.09) = 1 - P(Z<2.09) şeklinde bulunur.
  • Standart normal dağılıma dönüştürülen bir normal dağılımın P(Z<-1.28) olduğunu varsayalım. Bu olasılığı tabloda arayabilmenin tek koşulu aranan değerin pozitif olmasıdır. P(Z<-1.28) = 1 - P(Z<1.28) şeklinde bulunur.
  • Standart normal dağılıma dönüştürülen bir normal dağılımın P(Z>-3.04) olduğunu varsayalım. Normal dağılımın simetri özelliğinden bu dağılım P(Z<3.04) şeklinde yazılabilir.
  • Standart normal dağılıma dönüştürülen bir normal dağılımın P(1.65<Z<1.96) olduğunu varsayalım. Bu aralıklardaki olasılık P(Z<1.96) - P(Z<1.65) şeklinde bulunur.
  • Standart normal dağılıma dönüştürülen bir normal dağılımın P(-1.28<Z<1.28) olduğunu varsayalım. Bu aralıklardaki olasılık P(Z<1.28) - [ 1 - P(Z<1.28) ] = 2P(Z<1.28) - 1 şeklinde bulunur.[1]

Kaynakça

  1. ^ İstatistik. 3.baskı. Yüzer, Ali Fuat. Eskişehir: Anadolu Üniversitesi. 2006. s. 142. ISBN 975-06-0183-1. OCLC 567334808. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Student'in t dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.

<span class="mw-page-title-main">Ki-kare dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.

Hipotez testi, bir hipotezin doğruluğunun istatistiksel bir güvenilirlik aralığında saptanması için kullanılan yöntem.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

İstatistik bilimi için mod bir veri kümesi içinde en sık görülen değerdir. Tepedeğer olarak da adlandırılır. Bazı kullanım alanlarında, özellikle eğitim alanında, örnek veriler çok kere puan olarak anılmakta ve örnek mod değerine ise mod puanı adı verilmektedir.

Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistiğin temeli kurulmuştur.

Normal dağılım kullanılarak bazı olasılık değerlerini elde etmek zor ve zahmetli bir iştir. Bu yüzden, elde edilen normal dağılımın ortalaması sıfıra ve varyansı da bire eşitlenerek daha kolay işlem yapılır. Bu işlem için kullanılan yönteme, standart normal dağılım denir.

Merkezi limit teoremi büyük bir sayıda olan bağımsız ve aynı dağılım gösteren rassal değişkenlerin aritmetik ortalamasının, yaklaşık olarak normal dağılım göstereceğini ifade eden bir teoremdir. Matematiksel bir ifadeyle, bir merkezi limit teoremi olasılık kuramı içinde bulunan bir zayıf yakınsama sonucu setidir. Bunların hepsi, birçok bağımsız aynı dağılım gösteren rassal değişkenlerin herhangi bir toplam değerinin limitte belirli bir "çekim gücü gösteren dağılıma" göre dağılım gösterme eğiliminde olduğu gerçeğini önerir.

Bir olasılık dağılımı bir rassal olayın ortaya çıkabilmesi için değerleri ve olasılıkları tanımlar. Değerler olay için mümkün olan tüm sonuçları kapsamalıdır ve olasılıkların toplamı bire eşit olmalıdır. Örneğin, bir rassal olay olarak madeni paranın tek bir defa havaya atılıp yere düşmesi ele alınsın; değerler 'yazı' veya 'tura' veya bunlar isimsel değişken ölçeğinde ifade edilirse 0 (yazı) veya 1 (tura) olur; olasılıklar ise her iki değer için ½ olacaktır. Böylece madeni bir paranın tek bir defa atılma olayı için iki değer ve ilişkili iki olasılık bu rassal olayın olasılık dağılımı olur. Bu dağılım ayrık olasılık dağılımıdır; çünkü sayılabilir şekilde ayrı ayrı sonuçlar ve bunlara bağlı olan pozitif olasılıklar vardır.

<span class="mw-page-title-main">Tekdüze dağılım (sürekli)</span> Özel olasılık dağılımı

Sürekli tekdüze dağılım (İngilizce: continuous uniform distribution) olasılık kuramı ve istatistik bilim dallarında, her elemanı, olasılığın desteklendiği aynı büyüklükteki aralık içinde bulunabilir, her sürekli değer için aynı sabit olasılık gösteren bir olasılık dağılımları ailesidir. Desteklenen aralık iki parametre ile, yani minimum değer a ve maksimum değer b ile, tanımlanmaktadır. Bu dağılım kısa olarak U(a,b) olarak anılır.

Olasılık kuramı ve bir dereceye kadar istatistik bilim dallarında basıklık kavramı 1905da K. Pearson tarafından ilk defa açıklanmıştır. Basıklık kavramı bir reel değerli rassal değişken için olasılık dağılımının, grafik gösteriminden tanımlanarak ortaya çıkarılan bir kavram olan, sivriliği veya basıklığı özelliğinin ölçümüdür. Basıklık kavramının ayrıntıları olasılık kuramı içinde geliştirilmiştir. Betimsel istatistik için bir veri setinin basıklık karakteri pek dikkate alınmayan bir özellik olarak görülmektedir. Buna bir neden parametrik çıkarımsal istatistik alanında basıklık hakkında hemen hemen hiçbir kestirim veya sınama bulunmamasındandır ve pratik istatistik kullanımda basıklık pek önemsiz bir karakter olarak görülmektedir. Belki de basıklık ölçüsünün elle hesaplanmasının hemen hemen imkânsızlığı buna bir neden olmuştur.

<span class="mw-page-title-main">Galton kutusu</span>

Galton kutusu ünlü İngiliz istatistikçisi Francis Galton (1822-1911) tarafından hazırlanmış bir deney/öğretim aletidir ve amacı hatalar kuralı ve normal dağılım konularını pratik olarak göstermektir. Galton bu alete alaycı bir ifade ile quincunx adını vermiştir ve diğer bazı kişiler tarafından fasulya makinası olarak anılmaktadır.

Anderson-Darling sınaması, istatistik bilim dalında, bir parametrik olmayan istatistik sınaması olup örneklem verilerinin belirli bir olasılık dağılımı gösterip göstermediğini sınamak için, yani uygunluk iyiliği sınaması için, kullanılmaktadır. Bu sınama ilk defa 1952'de Amerikan istatistikçileri T.W.Anderson Jr. ile D.A.Darling tarafından yayınlanmıştır. Bu sınama Kolmogorov-Smirnov sınamasının değiştirilmesi ve olasılık dağılımının kuyruklarına daha çok ağırlık verilmesi ile ortaya çıkartılmıştır.

<span class="mw-page-title-main">Cauchy dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Cauchy-Lorentz dağılımı bir sürekli olasılık dağılımı olup, bu dağılımı ilk ortaya atan Augustin Cauchy ve Hendrik Lorentz anısına adlandırılmıştır. Matematik istatistikçiler genel olarak Cauchy dağılımı adını tercih edip kullanmaktadırlar ama fizikçiler arasında Lorentz dağılımı veya Lorentz(yen) fonksiyon veya Breit-Wigner dağılımı olarak bilinip kullanılmaktadır.

İstatistik bilim dalında, Kolmogorov-Smirnov (K-S) sınaması parametrik olmayan istatistik olup Andrey Kolmogorov ve Nikolai Smirnov adlarındaki iki Sovyet bilim insanı tarafından oluşturulmuştur.

Olasılık kuramında iki olayın bağımsız olması bu olaylardan birinin gerçekleşme olasılığının diğer olayın gerçekleşip gerçekleşmediğine bağlı olmaması anlamına gelmektedir. Örneğin;

Güven aralığı, istatistik biliminde bir anakütle parametresi için bir çeşit aralık kestirimi olup bir çıkarımsal istatistik çözüm aracıdır. Bir anakütle parametre değerinin tek bir sayı ile kestirimi yapılacağına, bu parametre değerini kapsayabilecek iki sayıdan oluşan bir aralık bulunur. Böylece güven aralıkları bir kestirimin ne kadar güvenilir olduğunu gösterir.

Tek anakütle ortalaması için parametrik hipotez sınaması veya tek-örneklem için sınama veya μ için sınama, bir rastgele örneklem ortalaması ile bu örneklemin çekilmiş olduğunu düşündüğümüz anakütlenin μ ile belirtilen "anakütle ortalaması" hakkında bir hipotez değeri belirtilmesinin anlamlı olup olmadığını araştırmamızı sağlayan parametrik hipotez sınamasıdır.

Standart skor, bir değerin normal dağılımda gerçekleşme olasılığını bulmamızı sağlayan ya da farklı popülasyonlardan gelen iki örneği karşılaştırmamızı sağlayan bir standart sapma türüdür. Standard skor eksi ya da artı değer alabilir; eksi ya da artı elimizde değerin aritmetik değerin altında ya da üstünde olduğunu gösterir. Z-skoru temel bir standard skor türüdür. Standart skor, istenilen değerin ve popülasyon aritmetik ortalamasının farkının, popülasyon standart sapmasına bölünmesiyle elde edilir. Bu dönüştürme işlemine, standartlaştırma veya normalleştirme denir.

<span class="mw-page-title-main">Hata payı</span>

Hata marjı ya da hata payı bir anketin sonuçlarındaki rastgele örnekleme hatası miktarını ifade eden bir istatistiktir. Hata payı ne kadar büyükse, anket sonucunun yığın özelliklerini yansıtacağına duyulan güven o kadar az olmalıdır. Bir popülasyon eksik örneklenip çıktı ölçüsü pozitif varyansa sahip olduğunda, yani ölçü değiştiğinde, hata marjı pozitif olur.