İçeriğe atla

Spiral

Bir notilus kabuğunun kesitinde, logaritmik spiral şeklinde dizilmiş bölmeler

Spiral matematikte, bir merkez noktadan doğan, bu nokta etrafında dönerek kademeli olarak uzaklaşan bir eğridir.

Bir Arşimet spirali, bir sarmal ve konik spiral

İki boyutlu spiraller

İki boyutlu spiraller, r yarıçapı θ açısının tekdüze bir sürekli fonksiyonu iken; kutupsal koordinat sistemi ile açıklanabilir.

Bir daire, bu fonksiyonun monoton (tekdüze) değil sabit olduğu özel bir durumudur.

İki boyutlu spirallerin önemli türlerinden bazıları şunlardır:

  • Arşimet spirali: (ayrıca bakınız:İnvolüt)
  • Euler spirali, Cornu spirali ya da clothoid
  • Fermat spirali:
  • The hiperbolik spiral:
  • Lituus:
  • logaritmik spiral: ; bunun yaklaşık değerleri doğada bulunur.
  • Fibonacci spirali ve altın spiral: Logaritmik spiralin özel bir durumudur (ayrıca bakınız: altın oran)
  • Theodorus’un Spirali: bitişik sağ üçgenlerden meydana gelen bir Arşimet spirali yakınsamasıdır.
  • Bir dairenin involütü, hemen hemen her modern dişlinin her dişinde iki defa kullanılır.

Üç boyutlu spiraller

Eşit aralıklı bir spiral
Arşimet spirali
Bir küre yüzeyi üzerinde iki farklı çeşit spiral

Basit 3-d spiraller için, üçüncü değişken, h (yükseklik) de θ açısının tekdüze bir sürekli fonksiyonudur. Örneğin, bir konik sarmal bir konik yüzey üzerinde, apexe mesafesi θnın üstel bir fonksiyonu olan bir spiral olarak tanımlanabilir.

Sarmal ve girdap üç boyutlu spirallerin bir çeşidi olarak görülebilir.

Ayrıca bakınız

İlişkili yayınlar

  • Cook, T., 1903. Spirals in nature and art. Nature 68 (1761), 296.
  • Cook, T., 1979. The curves of life. Dover, New York.
  • Habib, Z., Sakai, M., 2005. Spiral transition curves and their applications. Scientiae Mathematicae Japonicae 61 (2), 195 – 206.
  • Dimulyo, S., Habib, Z., Sakai, M., 2009. Fair cubic transition between two circles with one circle inside or tangent to the other. Numerical Algorithms 51, 461–476 [1] 27 Kasım 2018 tarihinde Wayback Machine sitesinde arşivlendi..
  • Harary, G., Tal, A., 2011. The natural 3D spiral. Computer Graphics Forum 30 (2), 237 – 246 [2] 22 Kasım 2015 tarihinde Wayback Machine sitesinde arşivlendi..
  • Xu, L., Mould, D., 2009. Magnetic curves: curvature-controlled aesthetic curves using magnetic fields. In: Deussen, O., Hall, P. (Eds.), Computational Aesthetics in Graphics, Visualization, and Imaging. The Eurographics Association [3] 3 Mart 2016 tarihinde Wayback Machine sitesinde arşivlendi..
  • Wang, Y., Zhao, B., Zhang, L., Xu, J., Wang, K., Wang, S., 2004. Designing fair curves using monotone curvature pieces. Computer Aided Geometric Design 21 (5), 515–527 [4] 24 Eylül 2015 tarihinde Wayback Machine sitesinde arşivlendi..
  • A. Kurnosenko. Applying inversion to construct planar, rational spirals that satisfy two-point G2 Hermite data. Computer Aided Geometric Design, 27(3), 262–280, 2010 [5] 24 Eylül 2015 tarihinde Wayback Machine sitesinde arşivlendi..
  • A. Kurnosenko. Two-point G2 Hermite interpolation with spirals by inversion of hyperbola. Computer Aided Geometric Design, 27(6), 474–481, 2010.
  • Miura, K.T., 2006. A general equation of aesthetic curves and its self-affinity. Computer-Aided Design and Applications 3 (1–4), 457–464 [6].
  • Miura, K., Sone, J., Yamashita, A., Kaneko, T., 2005. Derivation of a general formula of aesthetic curves. In: 8th International Conference on Humans and Computers (HC2005). Aizu-Wakamutsu, Japan, pp. 166 – 171 [7].
  • Meek, D., Walton, D., 1989. The use of Cornu spirals in drawing planar curves of controlled curvature. Journal of Computational and Applied Mathematics 25 (1), 69–78 [8] 24 Eylül 2015 tarihinde Wayback Machine sitesinde arşivlendi..
  • Farin, G., 2006. Class A Bézier curves. Computer Aided Geometric Design 23 (7), 573–581 [9] 24 Eylül 2015 tarihinde Wayback Machine sitesinde arşivlendi..
  • Farouki, R.T., 1997. Pythagorean-hodograph quintic transition curves of monotone curvature. Computer-Aided Design 29 (9), 601–606.
  • Yoshida, N., Saito, T., 2006. Interactive aesthetic curve segments. The Visual Computer 22 (9), 896–905 [10] 4 Mart 2016 tarihinde Wayback Machine sitesinde arşivlendi..
  • Yoshida, N., Saito, T., 2007. Quasi-aesthetic curves in rational cubic Bézier forms. Computer-Aided Design and Applications 4 (9–10), 477–486 [11] 3 Mart 2016 tarihinde Wayback Machine sitesinde arşivlendi..
  • Ziatdinov, R., Yoshida, N., Kim, T., 2012. Analytic parametric equations of log-aesthetic curves in terms of incomplete gamma functions. Computer Aided Geometric Design 29 (2), 129 – 140 [12] 24 Eylül 2015 tarihinde Wayback Machine sitesinde arşivlendi..
  • Ziatdinov, R., Yoshida, N., Kim, T., 2012. Fitting G2 multispiral transition curve joining two straight lines, Computer-Aided Design 44(6), 591–596 [13] 24 Eylül 2015 tarihinde Wayback Machine sitesinde arşivlendi..
  • Ziatdinov, R., 2012. Family of superspirals with completely monotonic curvature given in terms of Gauss hypergeometric function. Computer Aided Geometric Design 29(7): 510–518 [14] 24 Eylül 2015 tarihinde Wayback Machine sitesinde arşivlendi..
  • Ziatdinov, R., Miura K.T., 2012. On the Variety of Planar Spirals and Their Applications in Computer Aided Design. European Researcher 27(8–2), 1227-–1232 [15]23 Temmuz 2020 tarihinde Wayback Machine sitesinde arşivlendi..

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Yörünge</span> bir gökcisminin bir diğerinin kütleçekimi etkisi altında izlediği yola yörünge adı verilir

Gök mekaniğinde yörünge veya yörünge hareketi, bir gezegenin yıldız etrafındaki veya bir doğal uydunun gezegen etrafındaki veya bir gezegen, doğal uydu, asteroit veya lagrange noktası gibi uzaydaki bir nesne veya konum etrafındaki yapay uydunun izlediği kavisli bir yoldur. Yörünge, düzenli olarak tekrar eden bir yolu tanımlamakla birlikte, tekrar etmeyen bir yolu da ifade edebilir. Gezegenler ve uydular Kepler'in gezegensel hareket yasalarında tanımlandığı gibi, kütle merkezi elips biçiminde izledikleri yolun odak noktasında olacak şekilde yaklaşık olarak eliptik yörüngeleri takip ederler.

<span class="mw-page-title-main">Kutupsal koordinat sistemi</span>

Matematikte kutupsal koordinat sistemi veya polar koordinat sistemi, noktaların birer açı ve Kartezyen koordinat sistemindeki orijinin eşdeğeri olup "kutup" olarak bilinen bir merkez noktaya olan uzaklıklar ile tanımlandığı, iki boyutlu bir koordinat sistemidir. Kutupsal koordinat sistemi, matematik, fizik, mühendislik, denizcilik, robot teknolojisi gibi birçok alanda kullanılır. Bu sistem, iki nokta arasındaki ilişkinin açı ve uzaklık ile daha kolay ifade edilebildiği durumlar için özellikle kullanışlıdır. Kartezyen koordinat sisteminde, böyle bir ilişki ancak trigonometrik formüller ile bulunabilir. Kutupsal denklemler, çoğu eğri tipi için en kolay, bazıları içinse yegâne tanımlama yöntemidir.

<span class="mw-page-title-main">Gül (matematik)</span>

Matematikte gül veya rodonea, kutupsal koordinat sisteminde çizilmiş bir sinüs ya da kosinüs eğrisine denir. Gül eğrisi, aşağıdaki kutupsal denklemle ifade edilir:

<span class="mw-page-title-main">Arşimet spirali</span> boyutlu düzlemde, kaynağından çıkan ve sabit açısal hızla dönmekte olan bir doğru üzerinde, sabit hızla dışarıya doğru ilerleyen bir noktanın izleyeceği eğri

Arşimet spirali ya da aritmetik spiral; iki boyutlu düzlemde, orijinden çıkan ve sabit açısal hızla dönmekte olan bir doğru üzerinde, sabit hızla dışarıya doğru ilerleyen bir noktanın izleyeceği eğridir. İsmini, M.Ö. 3. yüzyılda yaşamış ve Spiraller Üzerine adlı kitabında bu eğrileri incelemiş olan Yunan matematikçi Arşimet'ten alır.

<span class="mw-page-title-main">Kardiyoit</span>

Matematikte kardiyoit veya yürek eğrisi, sabit bir çember üzerinde yuvarlanmakta olan aynı yarıçaplı ikinci bir çember üzerindeki herhangi bir noktanın izlediği eğridir. İsmi Yunanca kardia (kalp) ve eidos (şekil) kelimelerinin birleşiminden oluşur. Kalp (♥) şeklini anımsattığı için bu ismi almıştır. Kardiyoit ismini ilk kullanan, 18. yüzyıl İtalyan matematikçisi Johann Castillon olmuştur.

<span class="mw-page-title-main">Logaritmik spiral</span>

Logaritmik spiral, doğada sık rastlanan bir spiral çeşididir. İlk olarak 17. yüzyılda René Descartes ve Jakob Bernoulli tarafından tanımlanmış ve incelenmiştir. Bernoulli bu eğriye, kendine özgü matematiksel özelliklerinden dolayı, spira mirabilis adını vermiş ve mezar taşına bir logaritmik spiral oyulmasını vasiyet etmiştir.

<span class="mw-page-title-main">Hiperbolik spiral</span>

Hiperbolik spiral, kutupsal koordinat sisteminde

<span class="mw-page-title-main">Dördey</span>

Matematikte, dördeyler, karmaşık sayıları bir gerçel, üç sanal boyuta genişleten sayı sistemidir. İlk defa İrlandalı matematikçi Sir William Rowan Hamilton tarafından 1843 yılında tanımlanmış ve 3 boyutlu uzaydaki matematiğe uygulanmışlardır. Kuaterniyonlar değişme özelliğine sahip değildir. Her ne kadar pek çok uygulamada vektörler ve matrisler dördeylerin yerini almışsa da, kuramsal ve uygulamalı matematikte hala kullanılmaktadırlar. Başlıca kullanım alanı, 3 boyutlu uzayda dönme hareketinin hesaplanmasıdır.

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Fresnel integrali</span>

Fresnel integrali, S(x) ve C(x), iki transendental fonksiyon'dur. Augustin-Jean Fresnel'e atfedilmiştir ve optikte kullanılmaktadır. Yakın alan Fresnel difraksiyon fenomeninde ortaya çıkar; aşağıdaki integral gösterimi ile tanımlanırlar:

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

<span class="mw-page-title-main">Euler spirali</span> düzlemsel eğri

Euler spirali, eğimi eğrinin uzunluğuyla doğrusal olarak degişen bir eğridir. Euler spiralleri yaygın olarak spiros, clothoids veya Cornu spiralleri olarak da adlandırılır. Euler spirallerinin kırınım hesaplamalarında uygulamaları vardır. Genellikle demiryolu ve karayolu mühendisliklerinde teğet eğrisi ve dairesel eğri arasındaki geometriyi bağdaştırmaya ve aktarmaya yarayan geçiş eğrisi olarak kullanılır. Teğet eğrisi ve dairesel eğri arasındaki geçiş eğrisinin eğimindeki lineer değişim prensibi Euler spiralinin geometrisini belirler:

<span class="mw-page-title-main">Burgu türbini</span>

Arşimet burgu türbini, memba seviyesindeki suyun potansiyel enerjisini iş'e dönüştüren hidrolik bir makinedir.

<span class="mw-page-title-main">Fresnel denklemleri</span>

Bu kısım ışığın değişmez düzlemsel arayüzeylerdeki yansımaları ve kırınımlarını tanımlayan Fresnel denklemleri hakkındadır.Işığın bir açıklık boyunca kırınımları için Fresnel kırınımlarına bakınız.İnce lensler ve ayna teknolojileri için Fresnel lens lerine bakınız.

Matematikte, uzunluğu 1 olan ve uzayda bir norma sahip olan vektöre birim vektör denir. Birim vektör genellikle ‘û‘ gibi şapkalı ve küçük harflerle ifade edilir. Normalize vektör veya versor olmayan bir sıfır vektörü u ile eş yönlü olan birim vektörü u

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

Kerr–Newman metriği genel relativitide yüklü, dönen kütlelerin çevresindeki uzay zaman geometrisini tarif eden Einstein–Maxwell denklemlerinin çözümüdür. Bu çözüm astrofizik alanındaki fenomenler için pek faydalı sayılmaz çünkü gözlemlenebilen astronomik objeler kayda değer net yük taşımazlar. Bu çözüm uygulama alanı yerine daha çok teorik fizik ve matematiksel ilginin bir sonucudur..

<span class="mw-page-title-main">Apollonius teoremi</span> Öklid geometrisinde bir teorem

Geometri'de, Apollonius teoremi, üçgenin bir kenarortay uzunluğunu kenarlarının uzunluklarıyla ilişkilendiren bir teoremdir.

<span class="mw-page-title-main">Batlamyus teoremi</span> Öklid geometrisinde bir teorem

Öklid geometrisinde, Batlamyus teoremi, bir kirişler dörtgeninin dört kenarı ile iki köşegeni arasındaki bir ilişkiyi gösteridir. Teorem, Yunan astronom ve matematikçi Batlamyus'un adını almıştır. Batlamyus, teoremi astronomiye uyguladığı trigonometrik bir tablo olan kirişler tablosunu oluşturmaya yardımcı olarak kullandı.

<span class="mw-page-title-main">Barrow eşitsizliği</span>

Geometride Barrow eşitsizliği, bir üçgen içindeki rastgele bir nokta alındığında, bu nokta ile üçgenin köşeleri ve üçgenin kenarlarındaki belirli noktalar arasındaki mesafeleri ilişkilendiren bir eşitsizliktir. Adını Amerikalı bir matematikçi olan David Francis Barrow'dan almıştır.