İçeriğe atla

Spektrometre

Basit bir spektrometre şeması çizimi
Kütle spektrometresi

Spektrometre (spektrofotometre, spektrograf veya spektroskop) ya da tayfölçer, elektromanyetik spektrumun belirli bir bölümü üzerinde ışığın özelliklerini ölçerek spektroskopik analiz yöntemiyle materyalleri belirlemek için kullanılan bir araçtır.[1] Ölçülen değişken çoğunlukla ışığın yoğunluğudur ancak ışığın polarizasyon durumuna da bakılabilir. Bağımsız değişken ise genellikle ışık dalga boyu veya foton enerjisi ile doğrudan orantılı bir birimdir; dalga sayısı ya da elektron volt gibi. Spektrometre spektral çizgiler üretmek ve dalga boyları ve yoğunlukları ölçmek için spektroskopi amacıyla kullanılır. Spektrometre gamma ışınları ve X-ışınlarından uzak infrared ışınlarına kadar çok geniş bir dalga boyu aralığı üzerinde çalışılan araçlar için kullanılan bir terimdir. Alet nispi birimler yerine mutlak birimlerin spektrumunu ölçmek için tasarlanmış ise o zaman spektrofotometre olarak adlandırılır. Spektrofotometrelerin çoğunluğu görülebilir spektrum ve yakın spektral bölgelerinde kullanılmaktadır.

Genel olarak, belli bir alet spektrumun farklı kısımlarını ölçmek için kullanılan çeşitli teknikler nedeniyle bu toplam aralığının küçük bir bölümü üzerinde çalışacaktır. Optik frekansların altında (mikrodalga ve radyo dalgalarında olduğu gibi) ölçüm için spektrum analizörü özel elektronik bir cihazdır.

Spektrometreler

Bir prizmaya dayalı çok basit bir spektroskop

Spektrometreler çoğunlukla astronomi ve bazı kimya dallarında kullanılmaktadır. İlk spektroskoplar sadece ışık dalga boylarını kademeli olarak işaretleyen prizmalardan oluşuyordu. Modern spektrometreler ise genellikle tümü otomatik ve bir bilgisayar tarafından kontrol edilen bir sapma ölçüm şebekesi (kırılma ızgarası), hareketli bir yarık ve fotodedektörden oluşmaktadır.

Joseph von Fraunhofer bir prizma, kırınım yarığı ve teleskobu birleştirerek ilk modern spektroskobu geliştirdi.[2] Böylece spektral çözünürlük artışı sağlayan ve diğer laboratuvarlarda da yeniden üretilebilen bir alet elde etti. Gustav Robert Kirchhoff ve Robert Bunsen, kimyasal analizlerde spektroskopların uygulanmasını keşfettiler. Sezyum ve rubidyumu bu yaklaşımla buldular.[3][4] Kirchhoff ve Bunsen ayrıca Fraunhofer çizgileri de dâhil olmak üzere yıldız spektrumlarının kimyasal açıklamasını yaptılar.[5]

Ayrıca bakınız

Kaynakça

  1. ^ Butler, L. R. P.; Laqua, K. (1995). "Nomenclature, symbols, units and their usage in spectrochemical analysis-IX. Instrumentation for the spectral dispersion and isolation of optical radiation (IUPAC Recommendations 1995)". Pure and Applied Chemistry. 67 (10). IUPAC. ss. 1725-1744. doi:10.1351/pac199567101725. 22 Haziran 2016 tarihinde kaynağından arşivlendi. A spectrometer is the general term for describing a combination of spectral apparatus with one or more detectors to measure the intensity of one or more spectral bands. 
  2. ^ Brand, John C. D. (1995). Lines of Light: The Sources of Dispersive Spectroscopy, 1800 - 1930. Gordon and Breach Publishers. s. 37-42. ISBN 2884491627. 
  3. ^ Weeks, Mary Elvira (1932). "The discovery of the elements. XIII. Some spectroscopic discoveries". Journal of Chemical Education. 9 (8). ss. 1413-1434. Bibcode:1932JChEd...9.1413W. doi:10.1021/ed009p1413. 22 Kasım 2019 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Kasım 2011. 
  4. ^ "Robert Bunsen". infoplease. Pearson Education. 2007. 4 Mart 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Kasım 2011. 
  5. ^ Brand 1995, s. 63

Kitaplar

Dış bağlantılar

Curlie'de Spektrometre (DMOZ tabanlı)

İlgili Araştırma Makaleleri

Elektromanyetik tayf veya elektromanyetik spektrum (EMS), evrenin herhangi bir yerinde fizik kurallarınca mümkün kılınan tüm elektromanyetik radyasyonu ve farklı ışınım türevlerinin dalga boyları veya frekanslarına göre bu tayftaki rölatif yerlerini ifade eden ölçüt. Herhangi bir cismin elektromanyetik tayfı veya spektrumu, o cisim tarafından çevresine yayılan karakteristik net elektromanyetik radyasyonu tabir eder.

Ultraviyole (UV) veya morötesi; dalga boyu görünür ışıktan kısa, ancak X-ışınlarından uzun olan bir elektromanyetik radyasyon şeklidir. Güneş ışığında bulunur ve Güneş'ten çıkan toplam elektromanyetik radyasyonun yaklaşık %10'unu oluşturur. Ayrıca elektrik arkları, Çerenkov radyasyonu, cıva buharlı lambalar, bronzlaşma lambaları ve siyah ışık gibi kaynaklar tarafından üretilir. Uzun dalga boylu UV fotonları atomları iyonize edecek enerjiye sahip olmadığı için iyonlaştırıcı bir radyasyon olarak kabul edilmese de, kimyasal reaksiyonlara neden olabilir ve birçok maddenin parlamasına neden olabilir. Kimyasal ve biyolojik etkiler de dahil olmak üzere pek çok pratik uygulama, UV radyasyonunun organik moleküllerle etkileşime girmesinden türer. Bu etkileşimler emilimi veya ısıtma dahil moleküllerdeki enerji durumlarının ayarlanmasını içerebilir.

<span class="mw-page-title-main">Gustav Kirchoff</span> Alman fizikçi

Gustav Robert Kirchhoff,, Alman fizikçi ve matematikçi.

<span class="mw-page-title-main">Spektroskopi</span>

Spektroskopi elektromanyetik radyasyon ile maddenin etkileşiminin radyasyonun dalga boyu veya frekansının bir fonksiyonu olarak ortaya çıkan elektromanyetik spektrumu (tayf) ölçen ve yorumlayan bir çalışma alanıdır. Başka bir deyişle, elektromanyetik spektrumun tüm bantlarında görünür ışıktan kaynaklı olarak meydana gelen bir kesin renk çalışmasıdır.

Prizma, ışığın kırılması ve ayrıştırılması prensibine dayanan bir optik araçtır. Prizmalar, cam ya da plastik gibi saydam malzemelerden yapılmış, üçgen biçimindeki bir optik elemandır.

<span class="mw-page-title-main">Fotodiyot</span> p-n bağlantısına dayalı fotodetektör türü

Fotodiyot, görünür ışık, kızılötesi veya ultraviyole radyasyon, X ışınları ve gama ışınları gibi foton radyasyonuna duyarlı bir yarı iletken diyottur. Fotodiyot, fotonları emdiğinde akım veya voltaj Fotovoltaikleri üreten bir PN yarı iletken malzemedir.Semiconductor Optoelectronics .

Fraunhofer kırınımı ya da uzak-alan kırınımı dalganın uzak bölgelerde yayıldığı durumlarda uygulanan bir Kirchhoff-Fresnel kırınımı yaklaşımıdır.

Optik aletler görüntü veren ve analiz eden olmak üzere iki grupta toplanır. Bu aletlerden bazıları cisimlerin görüntülerini verirken bazıları ıse ışığın birleşimini, şiddetini ve polarize durumunu tayin etmekte kullanılır. Prizmalı spektrometre analiz eden sistemlerden olup verilen bir ışık demetinin içindeki çeşitli dalga bolarındaki ışınları ayırmayı sağlar. Prizmalı spektrometre prizma, mercekler ve bir yarıktan oluşmaktadır. Aydınlatma ile yarıktan giren ışık mercek ve prizmada ayrılmalara uğrar.

<span class="mw-page-title-main">Anders Jonas Ångström</span>

Anders Jonas Ångström İsveçli fizikçi ve spektroskopi biliminin kurucularından biriydi.

Fotometri bir astronomik nesnenin ışık akısı veya elektromanyetik radyasyonunun yoğunluğunun ölçülmesi ile ilgili bir astronomi tekniğidir.

Kimyasal elementlerin ya da kimyasal bileşiklerin emisyon spektrumu atom ya da moleküllerin yüksek enerji seviyesinden düşük enerji seviyesine geçişinden elde edilen elektromanyetik radyasyonun frekans spektrumudur. Yayılmış fotonun enerjisi iki enerji düzeyi arasındaki farka eşittir. Her atom için birçok mümkün geçişler vardır ve enerji düzeyleri arasındaki her geçiş spesifik enerji farkına sahiptir. Bu farklı geçişlerin toplamı, farklı ışınlar halinde gönderilmiş dalga boylarına ve emisyon spektrumunun düzenlenmesine neden olur. Her elementin emisyon spektrumu özeldir. Dahası, spektroskopi elementlerin madde içindeki bilinmeyen kompozisyonunu tespit etmek için kullanılabilir. Buna benzer olarak, moleküllerin emisyon spektrumları maddelerin kimyasal analizlerinde kullanılabilir.

<span class="mw-page-title-main">Doppler spektroskopisi</span>

Doppler spektroskopisi gezegenin ana yıldızın spektrumunda Doppler kaymaları gözlem yoluyla radyal hız ölçümleri Güneş Sistemi dışındaki gezegenlerin ve kahverengi cücelerin bulunması için kullanılan dolaylı bir yöntemdir.

Atomik, moleküler ve optik fizik, bir ya da birkaç atomun ölçeğinde, madde-madde ve ışık-madde etkileşimi çalışmadır ve enerji, birkaç elektron voltları etrafında ölçeklenir. Üç alanla yakından ilişkilidir. AMO teorisi, klasik, yarı klasik ve kuantum işlemlerini kapsar. Tipik olarak, teori ve emisyon uygulamaları, elektromanyetik yayılım ve emilme, spektroskopi analizi, lazer ve mazerlerin kuşağı ve genel olarak maddenin optik özellikleri, uyarılmış atom ve moleküllerden, bu kategorilere ayrılır.

<span class="mw-page-title-main">Spektral yoğunluk</span>

Güç spektrumunun zaman serileri bu sinyale sebep olan frekans bileşenlerinin dağılımını tanımlar. Fourier analizine göre herhangi bir fiziksel sinyal, farklı frekanslara ayrışabilir ya da devamlı bir sıra boyunca frekans spektrumlarına dönüşebilir. Belirli bir sinyal veya herhangi bir sinyal çeşitlerinin istatistiksel ortalaması içerdiği frekans bileşenlerine göre analiz edilir.Buna da spektrum denir.

<span class="mw-page-title-main">Spektroskopi tarihi</span>

Batı dünyasında modern spektroskopi 17. yüzyılda başlamıştır. Özellikle prizmalar olmak üzere optik bilimi alanındaki ilerlemeler, güneş spektrumunun sistematik biçimde gözlemlenebilmesine olanak verdi. Isaac Newton, beyaz ışığı oluşturmak üzere birleşen gökkuşağı renklerini tarif etmek için spektrum kelimesini kullanan ilk kişi oldu. 1800'lerin başında Joseph von Fraunhofer, spektroskopinin daha hassas ve niceliksel bir bilimsel teknik haline gelmesine imkân veren dağınımlı spektrometreler ile deneyler yaptı. O zamandan beri spektroskopi kimya, fizik ve astronomi alanlarında önemli bir rol oynadı ve oynamaya devam ediyor. Fraunhofer, birkaç tanesi daha önce Wollaston tarafından gözlemlenmiş olmasına rağmen, artık kendi adıyla anılan Güneş'in spektrumundaki koyu çizgileri gözlemlemiş ve ölçmüştür.

Optik cihaz veya optik alet, bir görüntünün görünümünü geliştirmek amacıyla ışık dalgalarını yönlendiren veya bir dizi karakteristik özelliklerini belirlemek amacıyla ışık dalgalarını analiz etmede kullanılan bir araçtır.

<span class="mw-page-title-main">Atomik emisyon spektroskopisi</span>

Atomik emisyon spektroskopisi, bir numunedeki bir elementin miktarını belirlemek için belirli bir dalga boyunda bir alev, plazma, ark veya kıvılcımdan yayılan ışığın yoğunluğunu kullanan bir kimyasal analiz yöntemidir. Emisyon spektrumundaki atomik spektrum dalga boyu, elementin kimliğini verirken, yayılan ışığın yoğunluğu elementin atom sayısı ile orantılıdır.

<span class="mw-page-title-main">Kütle spektrumu</span>

Kütle spektrumu, kimyasal bir analizi temsil eden m/z'ye (kütle-yük oranı) karşı yoğunluk grafiğidir. Bu nedenle, bir numunenin kütle spektrumu, bir numunedeki iyonların kütleye göre (daha doğrusu: kütle-yük oranına göre) dağılımını temsil eden bir modeldir. Genellikle kütle spektrometresi adı verilen bir alet kullanılarak elde edilen bir histogramdır. Belirli bir maddenin tüm kütle spektrumları aynı değildir. Örneğin, bazı kütle spektrometreleri analit moleküllerini parçalara ayırır; diğerleri sağlam moleküler kütleleri çok az parçalanma ile gözlemler. Bir kütle spektrumu, kütle spektrometresinin türüne ve uygulanan özel deneye bağlı olarak birçok farklı bilgi türünü temsil edebilir; ancak, kütle-yük oranı vs yoğunluk grafiklerinin tümü kütle spektrumu olarak adlandırılır. Organik moleküller için yaygın parçalanma süreçleri, McLafferty yeniden düzenlemesi ve alfa bölünmesidir.Düz zincirli alkanlar ve alkil grupları tipik bir dizi tepe noktası oluşturur: 29 (CH3CH2+), 43 (CH3CH2CH2+), 57 (CH3CH2CH2CH2+), 71 (CH3CH2CH2CH2CH2+) vb.

<span class="mw-page-title-main">Optik spektrometre</span> Spektrometre

Bir optik spektrometre, elektromanyetik spektrumun belirli bir bölümü üzerindeki ışığın özelliklerini ölçmek için kullanılan ve tipik olarak spektroskopik analizde malzemeleri tanımlamak için kullanılan bir araçtır. Ölçülen değişken çoğunlukla ışığın yoğunluğudur, ancak örneğin polarizasyon durumu da olabilir. Bağımsız değişken genellikle ışığın dalga boyu veya dalga boyu ile karşılıklı bir ilişkisi olan karşılıklı santimetre veya elektron volt gibi foton enerjisi ile doğru orantılı bir birimdir.

<span class="mw-page-title-main">B-tipi ana kol yıldızı</span> yıldız sınıflandırma

B-tipi ana kol yıldızı, tayf tipi B ve aydınlatma sınıfı V olan ana kol (hidrojen-yakan) yıldızıdır. Kütleleri Güneş'ten 2 ile 16 kat daha fazla ve yüzey sıcaklıkları 10.000 ile 30.000 K arasındadır. B-tipi yıldızlar son derece parlak ve mavidir. Spektrumları, en çok B2 alt sınıfında ve orta derecede hidrojen çizgilerinde göze çarpan nötr helyuma sahiptir. Örnekler arasında Regulus ve Algol A sayılabilir.