İçeriğe atla

Spearman'ın sıralama korelasyon katsayısı

İstatistik bilim dalında, Spearman'ın sıralama korelasyon katsayısı veya Spearman'ın rho, bu istatistiksel ölçüyü ilk ortaya atan İngiliz psikolog Charles Edward Spearman'a atfen adlandırılmıştır.[1] Matematik notasyon olarak çok defa eski Yunan harfi ρ (rho okunur) ile belirtilir. Bir parametrik olmayan istatistik ölçüsüdür ve iki değişken arasındaki bağımlılık, yani korelasyon, ölçüsü olarak bulunup kullanılır. Bu demektir ki Spearman'in rho (ρ) katsayısı iki değişken için çokluluklar dağılımı hakkında hiçbir varsayım yapmayarak, bu iki değişken arasında bulunan bağlantının herhangi bir monotonik fonksiyon ile ne kadar iyi betimlenebilineceğini değerlendirmek amaçlı incelemedir.[2][3]

Yöntem

Prensip olarak Spearman'ın sıralama korelasyon katsayısı ρ Pearson çarpım-moment korelasyon katsayısının özel bir halidir. ρ değerinin hesaplanması için iki değişken (Y ve X) içinde örneklem verilerinin sıralama düzeninde olmaları gereklidir. Genel olarak, örneklem verileri için bu koşul uygun değildir ve veriler sıralama düzeni halinde olmadan oransal ölçekli veya aralıksal ölçekli veya sırasal ölçekli olarak bulunur ve bu halde bir dönüşümle sıralama düzeni haline sokulurlar. Böylece ρ formülü için sıralama düzenli ve örneklem verileri kullanılır.[4]

Sonra iki değişken için karşılıklı veri elemanları ( ve )nin sıra numaraları arasındaki fark i=1,...n olarak bulunur. Bu tüm karşılıklı veriler (i=1...n) için uygulanır. Eğer sıra numaraları arasında hiç beraberlik yoksa, ρ değerini bulmak için şu formül kullanılır:

Burada

 : i elamni ile sıra numaraları arasındaki fark;
n : iki değişkenli örneklemde toplam gözlem sayısı.

Eğer sıralama esnasında beraberlikler bulunursa, sıralama numaraları verileri olarak kullanılarak klasik Pearson çarpım-moment korelasyon katsayısı formülü kullanılması tavsiye edilir.[4] Bu halde sıralama düzeni hazırlanırken beraberlikler halinde kullanılacak strateji her beraber sıra numaralı veriye beraberlik sıra ortalama değeri verilmesidir (yani 1 2,5 2,5 4 stratejisinin uygulanmasıdır). Bu halde formül şu olur :

Spearman'in ρ katsayısı değerleri de (aynı Pearson'un çarpım-moment korelasyon katsayısı gibi) -1 ile +1 arasında değişir. Uç değerler (yani ρ=-1 ve ρ=+1 ve yakın değerler) iki değişken sıralaması arasında bağlantının çok iyi olduğunu (eğer sıralamalar noktalar olarak bir serpme diyagramına konulursa hepsinin çizilen bir doğru üzerinde olduğunu) gösterirler. Eğer ρ<0 ise, sıralamalar arasında indirek aksi değişme vardır; yani biri artınca diğeri azalır ve aksi olur. Eğer ρ>0 ise sıralamalar arasında birlikte (yani birlikte artma veya eksilme) değişme görülür. Eğer ρ=0 ise, sıralamalar arasında hiçbir bağlantını bulunmadığı (ve serpme diyagrami üzerinde noktaların rastgele dağıldıkları) sonucu çıkartılır.

Diğer sıralama korelasyon ölçüleriyle ilişki

Spearman'in ρ sıralama korelasyon katsayısı ile Kendal'ın sıralama korelasyon katsayısı τ, bu ölçüleri destekleyen varsayımlara göre, birbiri ile aynıdır. Ancak aynı örneklem veriler serisi ile hesaplanan Spearman ρ katsayısı değeri ile Kendal'ın τ katsayısı değeri birbirinden farklı olacaktır. Buna başlıca neden hesaplama formüllerin geliştirilmesi için kullanılan mantıksal önerimlerin başka olması ve bu nedenle bibirinden çok değişik iki formülün ortaya çıkmasıdır. Bu iki katsayı arasındaki ilişki bir eşitsizlik ile ifade edilmiştir:

-1 < = 3 * τ - 2 * ρ < = 1

[5] Spearman'in ρ katsayısı sıralama düzeni verileri ile Pearson çarpım-moment korelasyon katsayısının hesaplanmasıdır ve temel mantik olarak bu iki katsayı aynı önerimlere dayanırlar. Halbuki Kendal'in τ katsayısı bir olasılık ifade eder ve uyuşma ve uyuşmama puanları için gerçek toplam ile maksimum mümkün toplam arasında bir orantıdır.

Örneğin

Tabloda iki değişken X ve Y için n=8 gözlem sayılı örneklem verileri için Spearman'ın sıralama korelasyon katsayısı ρ hesaplanması için örneğin verilmektedir. [A] ve [B] sütunlarında bu iki değişken X ve Y için örneklem verileri verilmiştir. [C] ve [D] sütunlarında bu iki değişkenlerin verileri için ayrı ayrı sıralama düzeni uygulanıp sıra numaraları x ve y olarak verilmiştir. X için verilerde 2 değişik beraberlik görülmektedir: 3 ve 10. Bu nedenle iki tekrarlı 3 için verilen sıra numaraları ortalaması (2+3)/2= 2,5 dur. Aynı şeklide 2 tekrarlı 10 için sıra numaraları 7,5 7,5 olarak verilmiştir. Y için verilerde ise 1,5 için 2 beraberlik ve 5 için 2 beraberlik bulunmaktadır ve bunlara da ortalama sıra numaraları verilmiştir. Sütun [E]de sıra numaraları farkları d verilmekte ve son [F] sütununda fark kareleri d2 hesaplanmaktadır.

[A] [B] [C] [D] [E] [F]
X Y x : X için sıralama y : Y için sıralama d : Sıralama
farkları
d2 : Farkların karesi
2 1,5 1 2,5 -1,5 2,25
3 1,5 2,5 2,5 0 0
3 4 2,5 5 -2,5 6,25
5 3 4 4 0 0
5,5 1 5 1 4 16
8 5 6 6,5 -0,5 0,25
10 5 7,5 6,5 1 1
10 9,5 7,5 8 -0,5 0,25
        Kareler
Toplamı
26

Fark kareleri toplamı olarak bulunmuştur. Hesapların değerleri formüle şöyle konulur:

ve şu sonuç bulunur .

Bu ρ=0.6 değeri sıfıra yakın pozitiftir. Sıfıra yakınlığı X ve Y sıralamaları arasındaki bağlantının (korelasyonun) az olduğunu gösterir ve negatif olma ise var zayıf bağlantının aksi yönde olduğunu ifade eder (yani X sıralaması artarsa Y sıralaması düşer ve aksi olur).

Bu veriler içinde beraberlikler bulunmaktadır. Bu nedenle kullanılan genel ρ formülü uygun sonuç vermeyebilir. Daha uygun sonuç bulmak için x ve y sıra numaraları için Pearson'un çarpım-moment korelasyon katsayısı bulunması tavsiye edilmektedir.

ρ kestirimi için anlamlılık sınaması

Eğer hesaplar ve anlamlılık sınaması el hesap makineleri ile yapılmakta ise, klasik çıkarımsal istatistik yöntemleri kullanılmalıdır.

ρ kestirminin anlamlılık sınanması için en basit yaklaşım belirli gözlem sayısı ve belirli anlamlılık düzeyi değerleri için hazırlanmış özel tablolar kullanılarak başarılır.[5] Ancak bu tablolar belirli veri sayısı ve anlamlılık düzeyi dışında ise kullanılamaz.

Önemli kompüter istatistik paketleri Spearman'in sıralamalı korelasyon katsayısını hesapladıkları zaman ek olarak anlamlılık sınaması için p-değerini de yanında vermektedirler.

Diğer bir alternatif yaklaşım eğer örneklem hacmi 20'den büyük ise uygulanabilir. Bu halde Student'in t dağılımına bir yaklaşım kullanılır:

değişkeni sıfır hipotez olan ρ=0 için bir Student'in t dağılımı gösterir. Ancak karşıt hipotez biraz zayıftır ve sifir hipotez ret edilnece ρ'nun ne değer alacağını göstermez.

Gözümlenen ρ değerinin anlamlı şekilde 0dan başka değerde olmasını sınama için modern yaklaşım olarak tekrar örnekleme sınaması yöntemi kullanılmaktadır ve bu tip sınama için, sıfır hipotez verilmişse anakütle ρ değerinin örneklemle elde edilen değerde ve ondan büyük olma olasılığı hesap edilir. Bu modern sınama yöntemi ancak kompüter programı yazabilen ve kompüteri iyi kullanabilen bir bilim insanı için çok kolay olabilir.

Ayrıca bakınız

Kaynakça

  1. ^ Spearman,C.(1904) "The proof and measurement of association between two things" Amer.J.Psychol. C.15 say.72–101
  2. ^ Kendall,M.G. (1962) Rank correlation methods, Griffin
  3. ^ Hollander,M. ve Wolfe,D.A. (1973) Nonparametric statistical methods, New York:Wiley
  4. ^ a b Myers,J.L. ve Well,A.D. (2003), Research Design and Statistical Analysis (2.ed.), Lawrence Erlbaum
  5. ^ a b Siegel,S. ve Castellan,N.J. (1988), Nonparametric statistics for the behavioral sciences 2. ed. New York: McGraw-Hill

Dış bağlantılar

  • [1]14 Nisan 2012 tarihinde Wayback Machine sitesinde arşivlendi. Küçük örneklemler için ρ için kritik değerler tablosu.
  • [2] 17 Mayıs 2008 tarihinde Wayback Machine sitesinde arşivlendi. Online ρ hesaplayıcısı.
  • [3] Beraberlikler olursa kullanılabilecek bir diğer formül vermekte.
  • [4]30 Mart 2012 tarihinde Wayback Machine sitesinde arşivlendi. Spearman'ın sıralama korelasyon katsayısı: Öğrenciler için hazırlanmış bir örnek problem çözümü ve notlar. Hesaplama için Microsoft Excel kullanılması da gösterilir.

İlgili Araştırma Makaleleri

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

Fizikte moment, fiziksel niceliğin mesafe ile bileşimidir. Momentler, genellikle sabit bir referans noktasına ya da eksene göre tanımlanırlar, ilgili referans noktasından ya da ekseninden belirli bir mesafede ölçülen fiziksel nicelikleri ele alırlar. Mesela bir kuvvetin momenti, o kuvvetin kendisinin ve bir eksenden uzaklığının çarpımıdır ve ilgili eksenin etrafında dönmeye sebep olur. Prensip olarak herhangi bir fiziksel nicelik, moment oluşturmak üzere bir mesafe ile bileşebilir. Sıkça kullanılan nicelikler içinde kuvvetler, kütleler ve elektrik yük dağılımları bulunmaktadır.

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

Regresyon analizi, iki ya da daha çok nicel değişken arasındaki ilişkiyi ölçmek için kullanılan analiz metodudur. Eğer tek bir değişken kullanılarak analiz yapılıyorsa buna tek değişkenli regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon analizi olarak isimlendirilir. Regresyon analizi ile değişkenler arasındaki ilişkinin varlığı, eğer ilişki var ise bunun gücü hakkında bilgi edinilebilir. Regresyon terimi için öz Türkçe olarak bağlanım sözcüğü kullanılması teklif edilmiş ise de Türk ekonometriciler arasında bu kullanım yaygın değildir.

<span class="mw-page-title-main">Açısal momentum</span> Fiziksel nicelik

Açısal momentum, herhangi bir cismin dönüş hareketine devam etme isteğinin bir göstergesidir ve bu nicelik cismin kütlesine, şekline ve hızına bağlıdır. Açısal momentum bir vektör birimidir ve cismin belirli eksenler üzerinde sahip olduğu dönüş eylemsizliği ile dönüş hızını ifade eder.

Korelasyon, olasılık kuramı ve istatistikte iki rassal değişken arasındaki doğrusal ilişkinin yönünü ve gücünü belirtir. Genel istatistiksel kullanımda korelasyon, bağımsızlık durumundan ne kadar uzaklaşıldığını gösterir.

<span class="mw-page-title-main">Çarpıklık</span>

Çarpıklık olasılık kuramı ve istatistik bilim dallarında bir reel-değerli rassal değişkenin olasılık dağılımının simetrik olamayışının ölçülmesidir.

Olasılık kuramı ve bir dereceye kadar istatistik bilim dallarında basıklık kavramı 1905da K. Pearson tarafından ilk defa açıklanmıştır. Basıklık kavramı bir reel değerli rassal değişken için olasılık dağılımının, grafik gösteriminden tanımlanarak ortaya çıkarılan bir kavram olan, sivriliği veya basıklığı özelliğinin ölçümüdür. Basıklık kavramının ayrıntıları olasılık kuramı içinde geliştirilmiştir. Betimsel istatistik için bir veri setinin basıklık karakteri pek dikkate alınmayan bir özellik olarak görülmektedir. Buna bir neden parametrik çıkarımsal istatistik alanında basıklık hakkında hemen hemen hiçbir kestirim veya sınama bulunmamasındandır ve pratik istatistik kullanımda basıklık pek önemsiz bir karakter olarak görülmektedir. Belki de basıklık ölçüsünün elle hesaplanmasının hemen hemen imkânsızlığı buna bir neden olmuştur.

Değerleyici güvenebilirliği, değerleyiciler arasında uyuşma veya konkordans değerleyiciler arasında bulunan uyuşma derecesini ölçmek amacı ile kullanılan istatistiksel yöntemleri kapsar.

İstatistik bilim dalı içinde sıralama düzeni veri dizisinin özel bir şekle dönüştürülmesini kapsar. Bir örneklem veya anakütle içinde bulunan her bir sayısal elemana bir sıralama numarası verilerek öyle bir sıralanır ki bu sıralanma sonucunda herhangi bir iki eleman ele alınırsa iki elemandan hangisinin sıralama düzeninde önde geldiği bilinebilir. Yani sıralama düzeni bir sayı dizisi olup bir örneklem veya anakütledeki her bir elemana bir sıralama numarası verilmesi ile elde edilir. Matematik terimi ile bu işlem nesnelerin tüm ön-sıralanması veya zayıf sıralanması olarak adlandırılır. Bu tüm sıralanma değildir, çünkü iki veya daha çok sayıda değişik elamanın beraber aynı sırada olmalarına imkân sağlanmaktadır. Ayrıca sayısal veriler bir özelliğe göre tüm olarak sıralanmamaktadır; yani veri elemanlarının veri dizisi içindeki yerleri değişmemektedir. Ama sıralama düzeni için her veri elemanına verilen sıra numaraları tüm sıralanma halindedir.Böylece sonradan bu sıra numaraları kullanılarak veri elemanlarını tüm sıralamaya sokmak kolay bir işlem olur. Örneğin, bir jeolojik örneklem elemanları jeoloğun uygun gördüğü kaya parçaları olsun; elaman ağırlığına göre sıra numaraları verilip örneklemdeki gerçek elemanlar hiç gerçekte sıraya sokulmadan, örnek ağırlıkları için sıralama düzen sayıları kullanılarak istatistiksel analizler yapılabilir. Böylece elde bulunan örneklemin kapsadığı, ölçülebilmesi çok karmaşık ve masraflı olabilen bir değişken için incelemeyi kolaylaştırmak mümkün olabilir. Örneklem elemanlarını sıralama düzenine sokan sıra numaraların istatistiksel incelenmesi, parametrik olmayan istatistik alanı kapsamı içine girmekte ve bu tip istatistik analiz de pratikte de önemli bir rol oynamaktadır.

İstatistik bilim dalında Kruskal-Wallis sıralamalı tek yönlü varyans analizi, bağımsız gruplar arası anakütle medyanlarının eşitliğini sınamak amacı ile kullanılan bir parametrik olmayan istatistik sınamasıdır. Adı bu yöntemi ilk defa ortaya koyan William Kruskal ve W. Allen Wallis atıfla konmuştur. Matematiksel olarak ayrı olmakla beraber, tek yönlü varyans analizinin bir değişik şekli olarak görülebilir. Diğer bir görüşe göre Mann-Whitney U sınamasının 3 veya daha çoklu gruplara genişletilmesidir.

İstatistik bilim dalı içinde Friedman sıralamalı iki yönlü varyans analizi sonradan çok tanınmış bir iktisatçı olan Amerikan Milton Friedman tarafından ortaya atılan bir parametrik olmayan istatistik sınamasıdır.

Mann-Whitney U testi niceliksel ölçekli gözlemleri verilen iki örneklemin aynı dağılımdan gelip gelmediğini incelemek kullanılan bir parametrik olmayan istatistik testdir. Aynı zamanda Wilcoxon sıralama toplamı testi veya Wilcoxon-Mann-Whitney testi) olarak da bilinmektedir. Bu testi ilk defa eşit hacimli iki örneklem verileri için Wilcoxon (1945) ortaya atmıştır. Sonradan, Mann and Whitney (1947) tarafından değişik büyüklükte iki örneklem problemleri analizleri için uygulanıp geliştirilmiştir.

İstatistik bilim dalında Yates süreklilik düzeltmesi veya Yates'in ki-kare sınamasıisimsel ölçekli' veya sırasal ölçekli iki değişken için gözlemlenmiş örneklem verileri bir bağımlılık tablosu halinde betimlenmiş iken, ilişkili iki değişken arasında bağımsızlık sınaması yapmak için bazı özel hallerde kullanılır.

Anderson-Darling sınaması, istatistik bilim dalında, bir parametrik olmayan istatistik sınaması olup örneklem verilerinin belirli bir olasılık dağılımı gösterip göstermediğini sınamak için, yani uygunluk iyiliği sınaması için, kullanılmaktadır. Bu sınama ilk defa 1952'de Amerikan istatistikçileri T.W.Anderson Jr. ile D.A.Darling tarafından yayınlanmıştır. Bu sınama Kolmogorov-Smirnov sınamasının değiştirilmesi ve olasılık dağılımının kuyruklarına daha çok ağırlık verilmesi ile ortaya çıkartılmıştır.

Matematik bilimi içinde moment kavramı fizik bilimi için ortaya çıkartılmış olan moment kavramından geliştirilmiştir. Bir bir reel değişkenin reel-değerli fonksiyon olan f(x)in c değeri etrafında ninci momenti şöyle ifade edilir:

Sıralama korelasyonu istatistik bilimi içinde aynı istatistik birimlerinin değişik kriter değişkene gore iki değişik sıralama arasında bulunan bağlantıyı inceler. Örneklem verisi kullanarak hesaplanan sıralama korelasyon katsayısı iki sıralama arasındaki doğrusal ilişkiyi ölçer ve elde edilen katsayının istatistiksel anlamlılığını değerlendirir.

Phi katsayısı veya Φ - katsayısı veya ortalama kare kontenjansı katsayısı olarak isimlendirilen ve matematik notasyonla by φ olarak ifade edilen iki tane iki-değerli isimsel veya sırasal değişkenin birbirine "birliktelik (association)" ilişkisini gösteren ölçü katsayılarıdır.

Pearson ki-kare testi nicel veya nitel değişkenler arasında bağımlılık olup olmadığının, örnek sonuçlarının belirli bir teorik olasılık dağılımına uygun olup olmadığının, iki veya daha fazla örneğin aynı anakütleden gelip gelmediğinin, ikiden fazla anakütle oranının birbirine eşit olup olmadığının ve çeşitli anakütle oranlarının belirli değere eşit olup olmadığının araştırılmasında kullanılır. İstatistik biliminin çıkarımsal istatistik bölümünde ele alınan iki-değişirli parametrik olmayan test analizlerinden olan ve ki-kare dağılımı'nı esas olarak kullanan ki-kare testlerinden en çok kullanılanıdır. İngiliz istatistikçi olan Karl Pearson tarafından 1900'da ortaya çıkartılmıştır.

Doğrusal cebirde veya daha genel ifade ile matematikte matris çarpımı, bir matris çiftinde yapılan ve başka bir matris üreten ikili işlemdir. Reel veya karmaşık sayılar gibi sayılarda temel aritmetiğe uygun olarak çarpma yapılabilir. Başka bir ifade ile matrisler, sayı dizileridir. Bu yüzden, matris çarpımını ifade eden tek bir yöntem yoktur. "Matris çarpımı" terimi çoğunlukla, matris çarpımının farklı yöntemlerini ifade eder. Matris çarpımının anahtar özellikleri şunlardır: Asıl matrislerin satır ve sütun sayıları, ve matrislerin girişlerinin nasıl yeni bir matris oluşturacağıdır.