İçeriğe atla

Soyut matematik

Ünlü bir soyut matematik ürünü olan Banach–Tarski paradox'unun temsili. Bir kürenin, yalnızca kesme ve döndürmelerle iki küreye dönüştürülebileceği matematiksel olarak kanıtlandıysa da, bu dönüşüm fiziksel dünyada var olamayacak nesneleri içerdiği için uygulanamaz.

En genel anlamda, soyut matematik, matematiğin soyut kavramlarını inceleyen bir kolu olarak adlandırılabilir. 18. yüzyıldan bu yana, soyut matematik matematiksel aktivitenin bir kategorisi olarak kabul edilmiştir. Bazen spekülatif matematik[1] olarak da kategorize edildiği olur. Soyut matematik navigasyon, mühendislik, fizik, astronomi gibi çeşitli alanlarda kullanılmaktadır. Soyut matematiğe dair en güçlü öngörülerden biri de soyut matematiğin ille de uygulamalı matematik olmak zorunda olmadığıdır; soyut şeylerleri onların içsel doğasını anlayarak çalışmak onların doğada nasıl apaçık biçimde nasıl olduğu ile ilgili olmak zorunda değildir. Soyut matematik ve uygulamalı matematik arasındaki felsefi açı farkına rağmen pratikte birçok örtüşme noktalarının olduğu da aşikardır.[2]

Gerçek dünyayı tanımlayan doğru modeller kurmak için uygulamalı matematikçiler genelde soyut kabul edilebilecek araç ve tekniklerden faydalanır. Bunun yanında, birçok soyut matematikçi soyut araştırmalarında onlara ilham veren doğal ve sosyal olgulardan faydalanırlar

Tarih

Antik Yunan

Antik Yunan matematikçileri soyut matematik ile uygulamalı matematik arasında ilk ayrıma gidenlerdir. Platon günümüzde aritmetik olarak adlandırılan "logistic" ve günümüzde sayılar kuramı olarak adlandırılan "arithmetics" arasında bir ayırıma gider; Platon'a göre "logistic" (günümüzün aritmetiği) iş adamlarınca ve askerlerce bilinmeliydi çünkü ona göre "sayıların sanatını bilmeyenler askerlerin nasıl dizilmesi gerektiğini de bilemezlerdi." ve aritmetik (günümüzün sayılar kuramı) filozoflarca bilinmeliydi; "çünkü onlar değişimin denizinden yükselerek, gerçek varlığı ele geçirenlerdir."[3] İskenderiylei Öklid, bir öğrencisi tarafından geometri ne işimize yarayacak diye sorunca kölesine öğrenciye para vermesini buyurur "çünkü bu adam öğrendiğinden illaki bir kazanç elde etmek istiyor. "[4] Book IV of Conics kitabındaki bazı teoremlerini gereksiz olduğunu söylenince şunları demiş yunan matematikçi Perda,[5]

Biz sırf kendilerini gösterdikleri için onları kabul ederiz, tıpkı matematikteki birçok şeyi kabul ettiğimiz gibi.

19.Yüzyıl

O dönemde soyut matematiğin ayrı bir disiplin olarak ele alınması fikri ortaya çıkmış gibi gözüküyor. Gauss'un nesli belirgin bir biçimde soyut ve uygulamalı matematik alanları arasında ayrım yapmadı. Daha sonraki yıllarda uzmanlaşma ve profesyonelleşme (özellikle matematiksel analizdeki Weitrass yaklaşımı) ile alanlar arasındaki ayırım daha da belirginleşti..

20.yüzyıl

20.yy'ın başlarında matematikçiler, David Hilbert'in de güçlü etkisi ile, aksiyomatik metodu kullanmaya başladılar. Soyut matematiğin mantıksal formülasyonu Bertrand Russel tarafından önerildi; niceleyenler yapısındaki önermeler daha makul görünüyordu, matematiğin büyük bir bölümü aksiyomatikleştirildikçe rigourous proof'un basit kriterlerine maruz kaldılar.

Gerçekte, bir aksiyomatik yapıda rigorous kanıt düşüncesine bir şeyler eklemez. Bir görüşe göre -Bourbaki grubunun tarafından tanımlanabilecek- soyut matematik kanıtlanmış olandır. Soyut matematikçilik, eğitim ile ulaşılabilecek bir meslek olarak tanındı

Soyutlama ve Genelleme

Soyut matematikteki temel kavramlardan biri genellemeler fikridir; soyut matematik, genellemelere karşı genel olarak yükselen bir trend gösterir.

  • Teoremleri veya matematiksel yapıları genellemek onları daha kolay anlamamızı ve temellerini görebilmemizi sağlar.Genellemeler materyal olanın gösterimi olarak basitleştirilebilir, bu da daha kısa kanıtlar veya

anlaşılması ve takibi daha kolay argümanlara yol açar.

  • Genellemeler bizim gereksiz çabalardan kaçınmamızı sağlar; ayrık konularda bağımsız kanıtlar bulmaktansa, genel kanıtlara ulaşabiliriz veya matematiğin başka alanlarından sonuçları kullanabiliriz.
  • Genellemeler matematiğin çeşitli branşları arasındaki bağlantıları kolaylaştırır. Kategori Teorisi matematiğin çeşitli alanlarındaki yapıların yaygınlığını inceler

Genellemenin sezgi üzerinedeki etkisi hem özneye hem de kişisel tercihler veya kişisel öğrenme metodlarına bağlıdır. Sıklıkla genellemeler sezgiye bir engel olarak görülürler; ama genellemeler, sezgiye bir yardımcı olarak da algılanabilir, özellikle materyal olanı anlamak için analojiler kurarak sezgisi iyi olanlara yardımcı olabilir.

Pürizm

Matematikçiler daima soyut matematik ile uygulamalı matematik fikirlerinde ayrıma düştüler. Bu tartışmaların en ünlü ve modern örneği G. H. Hardy’nin A Mathematician’a Apology’sinde bulunabilir.genellikle Hardy’nin uygulamalı matematiği çirkin ve sıkıcı bulduğu düşünülür. Hardy’ni resim ve şiirle karşılaştırdığı soyut matematiği tercih etse de, soyut matematik ve uygulamalı matematik arasındaki farkı söyle görüyor, uygulamalı matematik fiziksel dünyanın doğrularını ararken, soyut matematik fizikten bağımsız doğruları açıklar. Gerçek matematik olarak adlandırdığı ve estetik değeri olan matematik ile sıkıcı ve pratik değeri olan matematiği böyle ayırır. Hardy, Einstein ve Dirac gibi bazı fizikçileri matematikçilerin arasında görüyor ama the Apology’i yazdığı zamanda, genel görelilik ve kuantum mekaniğini işlevsiz görüyordu ki bu görüş sadece sıkıcı matematiğin işe yarar olduğunu savunmasını da izin veriyordu. Dahası, kısa süre sonra matrix teorisinin ve grup teorisinin fiziğe uygulanmayla, gerçek matematiğin de işe yarayabileceğini kabul etti.

Alt Cisim

Analiz fonksiyonların özellikleri ile ilgilidir. Süreklilik, limit, türev ve integral gibi kuramlarla uğraşır ve Newton ve Leibniz tarafından 17'nci yüzyılda tanıtılan ölçülemeyenlerin matematiği için sağlam temeller sunar. Gerçek analiz gerçek sayıların özelliklerini çalışır. Karmaşık analiz ise yukarıda bahsedilen konulardan karmaşık sayıların özelliklerine kadar uzanır. İşlevsel analiz sonsuz boyutlu uzay vektörünün çalışmasıdır

Soyut cebir liseyi kapsayan formüller uygulamasıyla karıştırılmamalıdır. Kümeleri ve onunla tanımlanan ikili işlemleri çalışır. Kümeler ve iki işlemler özelliklerine göre sınıflandırılabilirler. Örneğin, bir işlem kümesinin her üyesi için kimlik elemanı ve terlerini içeren bir dizi ilişki varsa küme ve işlem bir grup olarak görülür. Diğer yapılar halkaları alanları uzay vektörünü ve örgüleri içerir

Geometri uzay ve şekillerle ilgilenen alandır, özellikle uzayı etkileyen dönüşüm gruplarıyla. projectif geometri projectif gerçek projectiv düzlemleri etkileyen dönüşüm gruplarıyla ilgilidir ama tersini geometri hacmi olan kompleks düzlemlere etkiyen tersinir dönüşüm gruplarıyla ilgilidir. Geometri topolojiye genişletilebilir. Topoloji uzayın bağlı olduğu yollarla ilgilenir ve uzaklıkların ve açıların keskin ölçülerini göz ardı eder.

Sayı teorisi positif sayıların teorisidir. Bölünebilme ve ahenk gibi fikirlere dayanır. Temel teoremi her pozitif sayının asal bölenleri tektir. Bazı durumlarda, bu soyut matematiğe en çok uygulanabilen disiplindir. Örneğin, Goldbach hipotezi kolaylıkla ifade edilebilir. (fakat henüz ispatlanabilmiş veya çürütülebilmiş değil.) ve bazı durumlarda en az uygulanabilen disiplindir. Örneğin, Wiles’in fetmat eşitliğinin basit olmayan çözümleri olmadığı kanıtı otomorfik şekilleri anlamayı gerektirir

Notlar

  1. ^ See for example titles of works by Thomas Simpson from the mid-18th century: Essays on Several Curious and Useful Subjects in Speculative and Mixed Mathematicks, Miscellaneous Tracts on Some Curious and Very Interesting Subjects in Mechanics, Physical Astronomy and Speculative Mathematics.[1] 19 Ekim 2012 tarihinde Wayback Machine sitesinde arşivlendi.
  2. ^ "Welcome to Pure Mathematics | Pure Mathematics". uwaterloo.ca. 3 Ocak 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 28 Aralık 2023. 
  3. ^ Boyer, Carl B. (1991). "The age of Plato and Aristotle". A History of Mathematics (Second Edition bas.). John Wiley & Sons, Inc. ss. 86. ISBN 0-471-54397-7. Plato is important in the history of mathematics largely for his role as inspirer and director of others, and perhaps to him is due the sharp distinction in ancient Greece between arithmetic (in the sense of the theory of numbers) and logistic (the technique of computation). Plato regarded logistic as appropriate for the businessman and for the man of war, who "must learn the art of numbers or he will not know how to array his troops." The philosopher, on the other hand, must be an arithmetician "because he has to arise out of the sea of change and lay hold of true being." 
  4. ^ Boyer, Carl B. (1991). "Euclid of Alexandria". A History of Mathematics (Second Edition bas.). John Wiley & Sons, Inc. ss. 101. ISBN 0-471-54397-7. Evidently Euclid did not stress the practical aspects of his subject, for there is a tale told of him that when one of his students asked of what use was the study of geometry, Euclid asked his slave to give the student threepence, "since he must make gain of what he learns." 
  5. ^ Boyer, Carl B. (1991). "Apollonius of Perga". A History of Mathematics (Second Edition bas.). John Wiley & Sons, Inc. ss. 152. ISBN 0-471-54397-7. It is in connection with the theorems in this book that Apollonius makes a statement implying that in his day, as in ours, there were narrow-minded opponents of pure mathematics who pejoratively inquired about the usefulness of such results. The author proudly asserted: "They are worthy of acceptance for the sake of the demonstrations themselves, in the same way as Biz sırf kendilerini gösterdikleri için onları kabul ederiz, tıpkı matematikteki birçok şeyi kabul ettiğimiz gibi." (Heath 1961, p.lxxiv).
    The preface to Book V, relating to maximum and minimum straight lines drawn to a conic, again argues that the subject is one of those that seem "worthy of study for their own sake." While one must admire the author for his lofty intellectual attitude, it may be pertinently pointed out that s day was beautiful theory, with no prospect of applicability to the science or engineering of his time, has since become fundamental in such fields as terrestrial dynamics and celestial mechanics.
     

Ayrıca bakınız

  • Uygulamalı matematik
  • Mantık
  • Metamantık
  • Metamatematik

Dış bağlantılar

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.

<span class="mw-page-title-main">Öklid</span> Yunan matematikçi, aksiyomatik geometrinin mucidi

Öklid (Grekçe: Εὐκλείδης Eukleídēs; MÖ 330 - 275 yılları arasında yaşamış, İskenderiyeli bir matematikçidir. Megaralı Öklid'den ayırmak için bazen İskenderiyeli Öklid olarak anılır, genellikle "geometrinin kurucusu" veya "geometrinin babası" olarak anılan bir Yunan matematikçiydi. Ptolemy I döneminde İskenderiye'de aktifti. Elemanlar, yayınlandığı zamandan 19. yüzyılın sonlarına veya 20. yüzyılın başlarına kadar matematik öğretimi için ana ders kitabı olarak hizmet veren, matematik tarihindeki en etkili çalışmalardan biridir. Elemanlar’da, Öklid, küçük bir aksiyom setinden, şimdi Öklid geometrisi olarak adlandırılan şeyin teoremlerini çıkardı. Öklid ayrıca perspektif, konik kesitler, küresel geometri, sayı teorisi ve matematiksel kesinlik üzerine eserler yazdı.

<span class="mw-page-title-main">Matematikçi</span> matematik problemlerini çözmek için çalışmalarında kapsamlı bir matematik bilgisini kullanan kişi

Bir matematikçi, genellikle matematik problemlerini çözmek için çalışmalarında kapsamlı bir matematik bilgisini kullanan kişidir. Matematikçiler sayılar, veriler, miktar, yapı, alan, modeller ve değişimle ilgilenirler.

Proklos, Platon Akademisi'nin başına geçen ve diğer matematikçilerin çalışmaları hakkındaki yorumları için matematik tarihi açısından önemli olan bir Yeni Platoncu Yunan filozof.

<span class="mw-page-title-main">II. Bhāskara</span> Hint matematikçi ve astronom (yak.1114–1185)

II. Bhāskara veya sadece Bhaskara 12. yüzyılda yaşamış Hint matematikçi. "Öğretmen Bhaskara" anlamına gelen Bhaskara Achārya olarak da anılmıştır. Bijjada Bida yakınlarında, Deşastha Brahmin bir aileye doğmuştur. Varahamihira ve Brahmagupta matematik geleneğini takip eden Bhaskara, zaman içinde Ujjain'deki astronomi gözlemevinin başı konumuna gelmiştir. Batı Maharaştra'nın Sahyadri bölgesinde yaşamıştır. Torunu, 1207 yılında Bhaskara'nın eserlerinin çalışılması ve incelenmesi için bir okul kurmuştur.

<span class="mw-page-title-main">Godfrey Harold Hardy</span> İngiliz matematikçi (1877–1947)

Godfrey Harold Hardy, sayı teorisi ve matematiksel analizdeki başarılarıyla tanınan İngiliz bir matematikçiydi. Biyolojide, popülasyon genetiğinin temel bir ilkesi olan Hardy-Weinberg ilkesi olarak da bilinen, tür içi gen alışverişinin fazla olduğu topluluklarda başat ve çekinik genetik özelliklerin dağılımının oranı hakkındaki teorisiyle bu konudaki tartışmaya son vermiştir.

<span class="mw-page-title-main">İsidoros (matematikçi)</span> Bizanslı Rum bilim insanı ve mimar

Miletli İsidoros, Bizans imparatoru Justinianus'un tarafından, Konstantinopolis'teki Ayasofya katedralini yeniden tasarlatmak için, Anthemios ile beraber görevlendirilen Yunan mimar ve matematikçiydi. Pek çok akademik disiplinle ilgilenmiş İsidoros, Arşimet'in önemli eserlerinin derlemesini ve bakımsızlıktan neredeyse yok olmak üzere olan Öklit'in Elementler'i kitabının XV numaralı cildinin düzenlemesini ve restoresini yapmıştır.

<span class="mw-page-title-main">Yunan matematiği</span> Eski Yunanların Matematiği

Yunan matematiği, Doğu Akdeniz kıyılarında MÖ 7. yüzyıldan MS 4. yüzyıla kadar uzanan Arkaik dönemden Helenistik ve Roma dönemlerine kadar yazılan matematik metinleri ile ortaya çıkan fikirleri ifade eder. Yunan matematikçiler, İtalya'dan Kuzey Afrika'ya tüm Doğu Akdeniz'e yayılmış şehirlerde yaşadılar, ancak kültür ve dil açısından birleştiler. "Matematik" kelimesinin kendisi Antik Yunancadan türemiştir: Grekçe: μάθημα: máthēma Yunanca telaffuz: [má.tʰɛː.ma] Yunanca telaffuz: [ˈma.θi.ma], "eğitim konusu" anlamına gelir. Kendi iyiliği için matematik çalışması ve genelleştirilmiş matematik teorilerinin ve kanıtlarının kullanılması, Yunan matematiği ile önceki uygarlıkların matematiği arasındaki önemli bir farktır.

Öklid'in teoremi, sayılar teorisinde temel bir ifade olup sonsuz sayıda asal sayı olduğunu ileri sürer. Teoremin iyi bilinen farklı ispatları bulunmaktadır.

Smirnili Theon, asal sayıların, kareler gibi geometrik sayıların, devamlılığın/sürekliliğin, müziğin ve astronominin birbiriyle nasıl ilişkili olduğunu tanımlayan bir Yunan filozofu ve matematikçiydi. Çalışmaları Pisagor düşünce okulundan güçlü bir şekilde etkilenmiştir. Hayatta kalan Platon'u Anlamak İçin Yararlı Matematik Üzerine Yunan matematiği'ne giriş niteliğindeki bir araştırmasıdır.

Dinostratus, Menaechmus'un kardeşi olan Yunan matematikçi ve geometriciydi. Daireyi kareleştirme problemini çözmek için kuadratrisi kullanmasıyla tanınır.

Hypsicles, Gökcisimlerinin yükselişi Üzerine ve bir kürenin içerisine düzgün katıların çizilmesiyle ilgilenen bir çalışma olan Öklid'in XIV. Elemanlar Kitabı kitaplarını yazmasıyla tanınan eski bir Yunan matematikçi ve astronom.

Atinalı Theaetetus, muhtemelen Atina deme Sunium'lu Euphronius'un oğlu olan Yunan matematikçi. Başlıca katkıları, Öklid'in Elemanlar Kitabı X 'da yer alan irrasyonel uzunluklar üzerineydi ve tam olarak beş normal dışbükey çokyüzlü olduğunu kanıtlıyordu. Sokrates ve Platon'un bir arkadaşı ve Platon'un adını taşıyan Sokratik diyaloğunun ana karakteridir.

Cyreneli Theodorus, MÖ 5. yüzyılda yaşamış eski bir Libyalı Yunan matematikçi. Günümüze ulaşan ve ilk elden anlatılanlar, Platon'un diyaloglarından üçünde; Theaetetus, Sofist ve Devlet Adamı (Statesman) yer alır. Önceki diyalogda, şimdi Theodorus Sarmalı olarak bilinen matematiksel bir teoremi öne sürmektedir.

<span class="mw-page-title-main">Matematik tarihi</span> matematik biliminin tarihi

Matematik tarihi, öncelikle matematikteki keşiflerin kökenini araştıran ve daha az ölçüde ise matematiksel yöntemleri ve geçmişin notasyonunu araştıran bir bilimsel çalışma alanıdır. Modern çağdan ve dünya çapında bilginin yayılmasından önce, yeni matematiksel gelişmelerin yazılı örnekleri yalnızca birkaç yerde gün ışığına çıktı. MÖ 3000'den itibaren Mezopotamya eyaletleri Sümer, Akad, Asur, Eski Mısır ve Ebla ile birlikte vergilendirmede, ticarette, doğayı anlamada, astronomide ve zamanı kaydetmede/takvimleri formüle etmede aritmetik, cebir ve geometri kullanmaya başladı.

Magnesialı Theudius, Asya minor'da Magnesia'da doğan, Platon Akademi üyesi ve Aristoteles'in çağdaşı olan MÖ 4. yüzyıl Yunan matematikçidir. Sadece Proclus'un Euclid'e yorumundaki kadarıyla bilinir, burada Theudius'un "takdire şayan "Elementler" ürettiği ve birçok kısmi teoremi daha genelleştirdiği için felsefenin geri kalanında olduğu gibi matematikte de mükemmellik konusunda bir üne sahip olduğu" söylenir. Çünkü Elementleri mükemmel bir şekilde düzenlenmişti ve sınırlı önermelerin birçoğu daha genel biçimde ortaya konmuştu.

Leon Eski Yunan matematikçisi ve Neocleides'in öğrencisiydi. Elements adlı kitabı, Öklid'in aynı adlı eseri tarafından gölgede bırakıldı.

Matematik problemi, matematik yöntemleriyle temsil edilmeye, analiz edilmeye ve muhtemelen çözülmeye yatkın bir problemdir. Bu, güneş sistemindeki gezegenlerin yörüngelerini hesaplamak gibi gerçek dünya problemi veya Hilbert problemleri gibi daha soyut doğası olan bir problem ya da Russell Paradoksu gibi matematiğin doğasına atıfta bulunan bir problem de olabilir.

<span class="mw-page-title-main">János Bolyai</span> Macar matematikçi

János Bolyai veya Johann Bolyai, hem Öklid geometrisini hem de hiperbolik geometriyi içeren bir geometri olan mutlak geometriyi geliştiren bir Macar matematikçiydi. Evrenin yapısına tekabül edebilecek tutarlı bir alternatif geometrinin keşfi, matematikçilerin fiziksel dünyayla olası herhangi bir bağlantıdan bağımsız olarak soyut kavramları incelemelerine yardımcı oldu.