İçeriğe atla

Soyut cebir

Soyut cebir veya soyut matematik, matematiğin bir alanı olup, cebirsel yapılar üzerinde çalışır. Cebirsel yapılar, elemanları üzerinde belirli işlemlerin uygulandığı kümelerdir ve gruplar, halkalar, alanlar, modüller, vektör uzayları, kafesler ve alan üzerindeki cebirler içerir. Soyut cebir terimi, 20. yüzyılın başlarında temel cebirden ayırmak amacıyla türetilmiştir. Soyut cebir ileri matematik için temel hale geldikçe basitçe "cebir" olarak adlandırılırken, "soyut cebir" terimi pedagoji dışında nadiren kullanılır.

Soyut cebir kavramı günümüzde tüm cebirsel yapılar üzerine yapılan çalışmayı ifade etmektedir, temel cebirden farkı, bilinmeyen, çözümsüz gerçek ve karmaşık sayılardan oluşan cebirsel ifadeler ve formüller için doğru kurallar gösterir.

Temel cebir, gerçek alan ve basit cebir olarak bilinen yapıların başlangıç kısmı olarak ele alınabilir.

Tarih

19. yüzyıldan önce cebir, polinomların incelenmesi olarak tanımlanıyordu. Soyut cebir, daha karmaşık problemler ve çözüm yöntemleri geliştikçe 19. yüzyılda ortaya çıktı. Somut problemler ve örnekler sayı teorisinden, geometri, analiz ve cebirsel denklemlerin çözümlerinden geldi. Günümüzde soyut cebirin bir parçası olarak kabul edilen teorilerin çoğu, matematiğin çeşitli dallarından farklı gerçeklerin koleksiyonları olarak başladı, çeşitli sonuçların gruplandırıldığı bir çekirdek görevi gören ortak bir tema edindi ve sonunda ortak bir kavram kümesi temelinde birleştirildi. Bu birleşme, 20. yüzyılın ilk on yıllarında gerçekleşti ve gruplar, halkalar ve alanlar gibi çeşitli cebirsel yapıların resmi aksiyomatik tanımlarıyla sonuçlandı.

Temel kavramlar

Matematikçiler, matematiğin birçok alanında kullanılan ayrıntıları soyutlayarak, çeşitli cebirsel yapıları tanımlamışlardır. Örneğin, incelenen sistemlerin hemen hemen hepsi kümelerdir ve küme teorisinin teoremleri bunlara uygulanır. Üzerinde belirli bir ikili işlem tanımlanmış olan küme, magma olmaktadır. Cebirsel yapıya, ilişkisellik (yarı gruplar oluşturmak için); özdeşlik ve tersler (gruplar oluşturmak için); ve diğer daha karmaşık yapılar gibi ek kısıtlamalar ekleyebiliriz. Cebirsel yapılara ayrıntı ekledikçe daha fazla teorem kanıtlanabilir, fakat genellik azalır. Cebirsel nesnelerin "hiyerarşisi" (genellik açısından), karşılık gelen teorilerin bir hiyerarşisini yaratır: örneğin, grup teorisinin teoremleri, bir halkanın işlemlerinden biri üzerinde bir grup olması nedeniyle halkaları (belirli aksiyomlara sahip iki ikili işlemi olan cebirsel nesneler) incelerken kullanılabilir. Genel olarak, teorinin genelliği ile zenginliği arasında bir denge vardır: daha genel yapılar genellikle daha az sayıda önemsiz olmayan teorem ve daha az uygulamaya sahiptir.

Bir ikili işlemli cebirsel yapı örnekler:

  • Magma
  • Quasigroup
  • Monoid
  • Yarı grup
  • Grup

Birçok ikili işlemli cebirsel yapı örnekler:

  • Halka
  • Alan
  • Modül
  • Vektör uzayı
  • Alan üzerindeki cebir
  • Lie cebiri
  • Kafes
  • Boole cebiri

Bölümler

Soyut cebirin birçok bölümü vardır. Aşağıdaki bölümlerin dışında modüller, vektör uzayları, kafesler ve alan üzerindeki cebirler bölümler olmaktadır.

Grup teorisi

Üzerinde bir tane ikili işlemi tanımlanmış bir kümesi magma olarak adlandırılır.

Eğer bir magması aşağıdaki üç özelliği şağlıyorsa:

  • Bileşme aksiyomu: Her için
  • Etkisiz eleman: Öyle bir mevcuttur ki her için
  • Ters eleman: Her için öyle bir elemanı vardır ki

kümesine grup adı verilir. Basitçe gösterimi kullanılır ve işlem belli ise her için yerine yazılmaktadır. Bileşme aksiyomu sağlayan bir magmayı yarı grup, hem bileşme aksiyomu hem de etkisiz eleman özelliği sağlayan bir magmayı monoid denir. Ayrıca grubu değişme özelliği de sağlıyorsa:

  • Değişme: Her için

grubu ya değişmeli grup ya da Abelyen grup denmektedir.

Halka teorisi

Eğer üzerinde birer tane toplama: ve çarpma: işlemleri tanımlanmış bir kümesi aşağıdaki üç özelliği sağlıyorsa:

  • değişmeli bir grup
  • bir monoid
  • işlemi işlemi üzerine sağdan ve soldan dağılmalı

kümesine halka adı verilir. Basitçe gösterimi kullanılır. Toplama işlemin etkisiz elemanına genellikle , çarpma işlemin etkisiz elemanına da simgeleri kullanılır.

Alan teorisi

Eğer değişmeli halkası aşağıdaki özellikleri sağlıyorsa:

  • hariç her elemanın çarpma işlemiyle ters elemanı var

halkasına alan adı verilir.

Uygulamalar

Genel olması nedeniyle soyut cebir, matematik ve bilimin birçok alanında kullanılır. Mesela, cebirsel topoloji, topolojileri incelemek için cebirsel nesneleri kullanır. 2003'te kanıtlanan Poincaré varsayımı, bir manifoldun bağlantılılık hakkında bilgi kodlayan temel grubunun, bir manifoldun küre olup olmadığını belirlemek için kullanılabileceğini ileri sürer. Cebirsel sayılar teorisi, tam sayılar kümesini genelleştiren çeşitli sayı halkalarını inceler. Andrew Wiles, cebirsel sayılar teorisinin araçlarını kullanarak Fermat'ın Son Teoremini kanıtladı.

Fizikte, gruplar simetri işlemlerini temsil etmek için kullanılır ve grup teorisinin kullanımı diferansiyel denklemleri basitleştirebilir. Gösterge teorisinde, yerel simetri gereksinimi bir sistemi tanımlayan denklemleri çıkarmak için kullanılabilir. Bu simetrileri tanımlayan gruplar Lie gruplarıdır ve Lie grupları ve Lie cebirlerinin incelenmesi fiziksel sistem hakkında çok şey ortaya çıkarır; örneğin, bir teorideki kuvvet taşıyıcılarının sayısı Lie cebirinin boyutuna eşittir ve bu bozonlar, Lie cebiri nonabelian ise aracılık ettikleri kuvvetle etkileşime girer.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Tam sayı</span> sıfırın sağında bulunan sayılar büyükken solunda bulunan sayılar küçüktür

Tam sayılar, sayılar kümesinde yer alan sıfır (0), pozitif yönde yer alan doğal sayılar ve bunların negatif değerlerinden oluşan negatif sayılardan oluşan sayı kümesidir.

<span class="mw-page-title-main">Grup teorisi</span> simetrileri inceleyen matematik dalı

Grup teorisi veya Grup kuramı, simetrileri inceleyen matematik dalıdır. Simetri kuramı olarak da adlandırılabilir. Bir nesnenin simetrileri ile kast edilen, nesneye uygulandığında nesneye hiçbir etki olmamış gibi sonuç veren dönüşümlerdir. Her nesnenin en az bir simetrisi vardır: hiçbir şey yapmadan olduğu gibi bırakma dönüşümü. Bahsettiğimiz dönüşümlerin tersleri de vardır ve aradığımız özellikleri sağlarlar. Son olarak da dönüşümlerin art arda yapılması, birleşimli bir işlemdir. Bu üç koşula sırasıyla birim elemana sahip olma, elemenların tersi olma ve grup işleminin birleşmeli olması denir. Bu kavramların matematikte soyutlanması, üzerinde tersinebilir ve bileşme özelliğine sahip ikili bir işlemin tanımlı olduğu kümeler ile yapılır. Daha detaylı açıklamak gerekirse, grup nesnesi bir küme G ve onun üzerinde tanımlı bir işleminden oluşur. Bu operasyonun aşağıdaki şartları sağlaması gereklidir:

Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.

<span class="mw-page-title-main">Halka</span>

Halka, matematikte cebirin temel yapılarından biridir ve soyut cebirde tam sayıların soyutlamasıdır. Bu yapıyı işleyen dala halka kuramı denir. Halkalar diğer bir temel yapı olan grupların üzerine inşa edilir. Her halka, aynı zamanda değişmeli bir gruptur, ama bir halkadan daha fazla özelliği sağlaması istenir. Örneğin halkada grup işlemine ek olarak ikinci bir işlem daha vardır. Halkalara örnek olarak tam sayılar, modülo n sayılar, polinomlar ya da karmaşık sayılar verilebilir.

<span class="mw-page-title-main">Çarpma</span>

Çarpma, temel aritmetik işlemlerden biridir. Sayılarda çarpma, çarpılan sayının çarpan sayı kadar adedinin toplamının alınması işlemidir.

Grup, soyut cebirin en temel matematiksel yapısıdır. Grup, ayrıca bir ikili işlemin tanımlı olduğu bir kümedir. Bir grubun grup olabilmesi için aynı zamanda bu işlemin birleşmeli, birim elemanlı ve ters elemanlı olması gerekir. Soyut cebirin halka, cisim, modül gibi diğer yapılarının temelini oluşturur.

Lie işlemcisi, matematikte ve fizikte geniş bir kullanım alanı bulur. Bir cismin üzerine bu dönüşüm ile tanımlanan yöney (vektör) uzayı Lie cebri olarak adlandırılır. Adını Sophus Lie'den almıştır.

Eğer bir kümeyse, kümesinden kümesine giden bir fonksiyona kümesi üzerine ikili işlem denir. İkili işlemi olarak gösterirsek, yerine genellikle , , ya da daha yaygın olarak yazmak bir gelenek halini almıştır. Burada önemli olan, her için, işlemin sonucu olan elemanının yine kümesinde olmasıdır, yoksa ikili bir işlemden söz edemeyiz. Örneğin, ise, işlemi bu küme üzerinde ikili bir işlem değildir. Örneğin, bir doğal sayı değildir. Öte yandan olarak tanımlanan işlem doğal sayılar kümesi üzerine ikili bir işlemdir.

Cisim, halka ve grup gibi soyut bir cebirsel yapıdır. Kabaca, elemanları arasında toplama, çıkarma, çarpma ve bölme yapılabilen ve bu işlemlerde sayılardan alışık olduğumuz temel aritmetik kurallarının geçerli olduğu bir küme olarak tanımlanabilir.

Cebirsel geometri, matematiğin bir dalıdır. Adından anlaşılabileceği gibi, soyut cebirin, özellikle değişmeli cebirin yöntemleri ile geometrinin dili ve problemlerini bir araya getirir. Çağdaş matematik içerisinde merkezi bir rol üstlenmesinin yanında, karmaşık analiz, topoloji, sayılar kuramı gibi matematiğin diğer dallarıyla yakın ilişkisi vardır.

Matematikte değişme özelliği, terimlerin sırasının değişmesiyle sonucun değişmediği ikili işlemlere özgü bir özelliktir. Birçok ikili işlemin temel bir özelliği olmasının yanı sıra, birçok matematiksel ispat da buna dayanır. En sık olarak, "3 + 4 = 4 + 3" ya da "2 × 5 = 5 × 2" gibi ifadelerin açıklanmasında rastlanılsa da, daha ileri düzey durumlarda da kullanılabilir.

Yutan eleman, üzerinde ikili bir işlem bulunan bir kümede özel bir eleman (öğe). Bir küme ve üzerinde ikili bir işlemden oluşmuş matematiksel nesneye grupoit (magma) denir. Bir grupoitte herhangi bir elemanla soldan işleme sokulduğunda hep kendini veren elemana soldan yutan eleman denir.

<span class="mw-page-title-main">Cebirsel topoloji</span>

Cebirsel topoloji, topolojik uzayları cebirsel gereç ve yöntemlerle inceleyen matematik dalı. Matematikte bir kümenin üzerine döşenecek yapı, yönelinen matematik dalını belirler. Bir kümeye bir ya da birkaç işlem konarak sayılar kuramı ya da cebir yapmaya başlanabilir. Kümenin üzerine bir topoloji koyaraksa topoloji ve, ayrıca uzunluk koyarsak, geometri yapmaya başlanır. Üzerine topoloji konmuş bir uzayı incelemek için kimi cebirsel, aritmetik veya topolojik değişmezler tanımlanır; bunlar aracılığıyla topolojik uzayın özellikleri ayırdedilir. Örneğin tıkızlık, bağlantılılık, sayılabilirlik bu tür değişmezlerdir. Topolojik eşyapısal iki uzaydan biri bu değişmeze sahipse diğeri de buna sahip olmalıdır. Yani, eğer iki uzay için ayrı ayrı bakılan bir değişmez aynı değilse, bu iki uzay eşyapısal olmayacaktır. Yukarıda anılan en eski değişmezlerin hemen ardından inşa edilen klasik değişmezler cebirsel olanlardır.

<span class="mw-page-title-main">Temel cebir</span>

Basit cebir, matematik dersinde öğretilen cebirin en temel kısmıdır. Normalde liselerde öğretilir ve öğrencilerin işlem ve belirli sayılar üzerine kurulu olan aritmetiği anlamalarını sağlar. Cebir, değişken olarak bilinen sabit olmayan değerlerin büyüklüklerini açıklar. Soyut cebir aksine temel cebir, cebirsel yapı ile ilgilenmez, reel sayı ve karmaşık sayılarla ilgilenir.

Şablon:Group theory sidebar

<span class="mw-page-title-main">Birleşme özelliği (ikili işlemler)</span>

Matematikte birleşmeli özellik, bir küme üzerine tanımlanmış ikili işlemlerin ayırt edici özelliklerinden biridir. Bu özelliği sağlayan ikili işlemlere birleşmeli işlem denir. Açık olarak bu özellik, (xy)z = x(yz) demektedir, yani üç elemanı "çarparken" işlem sırasının önemli olmadığını söylemektedir, bir başka deyişle birleşmeli özellikte işlem yaparken paranteze gerek olmadığını söylemektedir. Örneğin tam sayılar kümesi Z üzerine tanımlanmış olan toplama işlemi birleşmeli bir işlemdir ancak çıkarma işlemi birleşmeli değildir, çünkü eşitliği her için sağlanmasına karşın, eşitliği için sağlanmaz.

Eşyapı ya da izomorfizma (ya da izomorfi), aynı kategoride(grupta) olan benzer iki matematiksel obje arasında bir gönderim olup matematiksel vücut tersi yapıda da muhafaza edilir. Aralarında bu şekilde eşyapı bulunan objelere eşyapısal ya da izomorf(ik) objeler denir. Örneğin iki küme arasında eşyapı, birebir, örten bir gönderimdir. Kümelerin üzerinde elemanlara sahip olma haricinde bir oluşum olmadığından, eşyapı gönderiminin koruyacağı başka bir yapı yoktur. Soyut cebirde iki grup arasında bir eşyapı, birebir, örten bir gönderimdir; dahası, iki gruptaki işleme saygı gösterir, bu iki işlemin birbirleriyle etkileşim halinde olmasını sağlar.

Tarih boyunca matematiğin konu çeşitliliği ve derinliği artmaktadır, matematiği kavrama, birçok konuyu matematiğin daha genel alanlarına göre sınıflandırma ve düzenleme için bir sistem gerektirir. Bir dizi farklı sınıflandırma şeması ortaya çıkmıştır ve bazı benzerlikleri paylaşsalar da, kısmen hizmet ettikleri farklı amaçlara bağlı olarak farklılıkları vardır. Ek olarak, matematik geliştirilmeye devam ettikçe, bu sınıflandırma şemaları da yeni oluşturulan alanları veya farklı alanlar arasında yeni keşfedilen bağlantıları dikkate alacak şekilde değişmelidir. Farklı alanlar arasındaki sınırı aşan, genellikle en aktif olan bazı konuların sınıflandırılması daha zor hale gelir.

<span class="mw-page-title-main">Temsil teorisi</span>

Temsil teorisi soyut cebirdeki cebirsel yapıları, daha somut olan matematiksel nesnelerin dönüşümleri olarak tasvir etmeye çalışan bir matematik dalıdır. Örneğin soyut bir grubunu bir vektör uzayı 'nin eşyapı dönüşüm grubunun() içinde görmeye çalışır. Böyle temsillere doğrusal temsil denir, çünkü bu temsil aslında grubundan genel lineer grup 'ye bir morfizma yazmak demektir. Böyle bir temsil bulmaktaki amaç, grubunu çalışmak için lineer cebir kullanmaktır. Soyut gruplardaki çarpma işlemi, özellikle bir bilgisayar için matris çarpmasından daha zordur. Soyut bir grubun doğrusal temsillerini kullanarak, gruptaki kimi hesaplamaları bilgisayara yaptırmak daha kolay olur.

<span class="mw-page-title-main">Bidördey</span>

Soyut cebirde, bidördeyler sayılarıdır. Klasik dördeylere benzese de sayıları reel sayılar değil karmaşık sayılar kümesinin elemanlarıdır. Bir başka deyişle, dördey grubu elemanları olan elemanlarının katsayıları reel sayılar kümesinin elemanları değil karmaşık sayılar kümesinin elemanlarıdır.