İçeriğe atla

Sonlu farklar yöntemi

Sonlu farklar yöntemi bir sayısal yöntemdir. Sonlu fark denklemlerinden faydalanır. Bu denklemler ile diferansiyel denklemlerin analitik çözümlerine yaklaşılır.

Diferansiyel denklemlerin çözümünde kullanılan sayısal yöntemler, diferansiyel denklemler yerine cebirsel denklemlerin koyulması esasına dayanır. Sonlu fark yönteminde bu işlem, türevlerin yerine farkların koyulmasıyla gerçekleştirilir.[1]

Taylor polinomundan türetilişi

n!, n'nin faktöriyelini ve Rn(x) de n. dereceden Taylor polinomu ile asıl fonksiyonun değerleri arasındaki farkı gösteren kalan terimidir. Örnek olarak f fonksiyonunun ilk türevini ele alırsak,

x0 yerine a ve (x-a) yerine h yazarsak,

Tüm terimleri h ile bölersek,

f'(a)'yı yalnız bırakırsak,

Kalan terim göreceli olarak ufak olduğu için aşağıdaki yaklaşıma ulaşırız:

Kesinlik ve mertebe

Yöntemin oluşturduğu hata, söz konusu denklemin gerçek analitik çözümü ile bu gerçek çözüme yapılan yaklaşma (yaklaşık olarak eşit) arasındaki farka eşittir. Sonlu farklar yöntemindeki temel iki hata: yuvarlama hatası ve kesme hatasıdır. Yuvarlama hatası, bilgisayarın ondalık değerleri bir basamaktan sonra yukarı yuvarlamasından oluşur. Yuvarlama hatasına kesinliğin azalması da denebilir. Kesme hatası da, sonlu fark denkleminin gerçek çözümü ile gerçek çözüme yapılan yaklaşım arasındaki farka eşittir (Burada, yuvarlama hatası sıfır kabul edilir.)

Sonlu farklar yöntemi bir fonksiyonun bir ağ üzerinde ayrıklaştırılmasına dayanır.

Sonlu farklar yöntemini bir problemi çözmede kullanmak için, önce problemin tanım kümesini ayrıklaştırmak gerekir. Ayrıklaştırma, genelde, tanım kümesini eşit parçalara bölerek yapılır (bir örnek için sağdaki resim).

Ayrıca bakınız

Kaynakça

  1. ^ Isı ve Kütle Transferi Yunus A. Çengel - Afshin J. Ghajar. Palme Yayınevi. 1 Ocak 2021. s. s.299. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

<span class="mw-page-title-main">Diferansiyel denklem</span>

Matematikte, diferansiyel denklem, bir ya da birden fazla fonksiyonu ve bunların türevlerini ilişkilendiren denklemdir. Fizik, kimya, mühendislik, biyoloji ve ekonomi alanlarında matematiksel modeller genellikle diferansiyel denklemler kullanılarak ifade edilirler. Bu denklemlerde, fonksiyonlar genellikle fiziksel ya da finansal değerlere, fonksiyon türevleriyse değerlerin değişim hızlarına denk gelir.

<span class="mw-page-title-main">Adi diferansiyel denklem</span>

Matematikte adi diferansiyel denklem, tek değişkenli fonksiyonların türevlerini ilişkilendiren diferansiyel denklem çeşididir. Adi diferansiyel denklemler adı daha yaygındır. Kapalı olarak şeklinde gösterilirler. Bu ifadede denklemin derecesini gosterir.

<span class="mw-page-title-main">Dalga denklemi</span> kısmi diferansiyel bir denklem

Dalga denklemi fizikte çok önemli yere sahip bir kısmi diferansiyel denklemdir. Bu denklemin çözümlerinden, ses, ışık ve su dalgalarının hareketlerini betimleyen fiziksel nicelikler çıkar. Kullanım alanı, akustik, akışkanlar mekaniği ve elektromanyetikte oldukça fazladır. Genellikle elektromanyetik dalgalar gibi dalgalar için dalga denkleminin vektörel formülasyonu kullanılır. Bu formülasyonda elektrik alanları şeklindeki vektörlerle gösterebilir ve vektörün her bi bileşeni skaler dalga denklemine uymak zorundadır. Yani vektörel dalga denklemleri çözülürken her bir bileşen ayrı ayrı çözülür. Denklemin en basit hali aşağıdaki şekliyle gösterilir,

<span class="mw-page-title-main">Akışkanlar dinamiği</span> hareket halindeki akışkanların (sıvılar ve gazlar) doğal bilimi

Fizik, fiziksel kimya ve mühendislikte akışkanlar dinamiği, akışkanların akışını tanımlayan akışkanlar mekaniğinin bir alt disiplinidir. Aerodinamik ve hidrodinamik dahil olmak üzere çeşitli alt disiplinleri vardır. Akışkanlar dinamiğinin, uçaklardaki kuvvetlerin ve momentlerin hesaplanması, boru hatları boyunca petrolün Kütle akış hızının belirlenmesi, hava durumu modellerinin tahmin edilmesi, uzaydaki bulutsuların anlaşılması ve fisyon silahı patlamasının modellenmesi dahil olmak üzere geniş bir uygulama yelpazesi vardır.

<span class="mw-page-title-main">Navier-Stokes denklemleri</span> Akışkanların hareketini tanımlamaya yarayan denklemler dizisi

Navier-Stokes denklemleri, ismini Claude-Louis Navier ve George Gabriel Stokes'tan almış olan, sıvılar ve gazlar gibi akışkanların hareketini tanımlamaya yarayan bir dizi denklemden oluşmaktadır.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir. Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır. Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir. Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır. Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir.

<span class="mw-page-title-main">Sayısal analiz</span>

Sayısal analiz, diğer adıyla nümerik analiz veya sayısal çözümleme, matematiksel analiz problemlerinin yaklaşık çözümlerinde kullanılan algoritmaları inceler. Bu nedenle birçok mühendislik dalı ve doğa bilimlerinde önem arz eden sayısal analiz, bilimsel hesaplama bilimi olarak da kabul edilebilir. Bilgisayarın işlem kapasitesinin artması ile gündelik hayatta ortaya çıkan birçok sistemin matematiksel modellenmesi mümkün olmuş ve sayısal analiz algoritmaları burada ön plana çıkmıştır. 21. yüzyıldan itibaren bilimsel hesaplama yöntemleri mühendislik ve doğa bilimleri ile sınırlı kalmamış ve sosyal bilimler ile işletme gibi alanları da etkilemiştir. Sayısal analizin alt başlıklarına adi diferansiyel denklemlerin yaklaşık çözümleri ve özellikle veri biliminde önem taşıyan sayısal lineer cebir ile optimizasyon örnek gösterilebilir.

<span class="mw-page-title-main">Fourier serisi</span>

Matematikte, Fourier serileri bir periyodik fonksiyonu basit dalgalı fonksiyonların toplamına çevirir.

Matematikte, Poisson denklemi elektrostatik, makine mühendisliği ve teorik fizik'de geniş kullanım alanına sahip eliptik türdeki Kısmi diferansiyel denklemlerdir. Fransız matematikçi, geometrici ve fizikçi olan Siméon Denis Poisson'dan sonra isimlendirilmiştir. Poisson denklemi

Fizikte akustik dalga denklemi, akustik dalgaların bir ortamda yayılımını düzenler. Denklemin biçimi ikinci dereceden kısmi diferansiyel denklemdir. Denklem, akustik basınç ve parçacık hızı u nun gelişimini, konum r ve zaman türünden fonksiyon olarak ifade eder. Denklemin basitleştirilmiş bir formu akustik dalgaları sadece bir boyutlu uzayda, daha genel formu ise dalgaları üç boyutta tanımlar.

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

Kesme hatası şu şekilde anlaşılabilir: Sayısal analiz ve bilimsel hesaplamalarda, sonsuz sayıda terimden oluşan bir toplama işlemi, gerektiği zaman, herhangi bir teriminden itibaren kesilerek ikiye ayrılır. Ardından sonlu sayıda terimden oluşan değerce büyük olan ilk kısmın, sonsuz sayıda olan tüm toplama işlemine eşit olduğunun varsayılır. Kesilerek atılan ikinci kısmın değerce büyüklüğünün ilk kısma göre çok ufak olduğu farz edilir. Bu yaklaşımda oluşan hata bağıl olarak küçüktür ve bu hataya kesme hatası denir.

Sonlu fark, f(x + b) − f(x + a) matematiksel ifadesidir.

Matematiksel analizde Legendre fonksiyonları, aşağıdaki Legendre diferansiyel denkleminin çözümleridir.

 ;

Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.

<span class="mw-page-title-main">Yörünge mekaniği</span>

Yörünge mekaniği veya astrodinamik, roketler ve diğer uzay araçlarının hareketini ilgilendiren pratik problemlere, balistik ve gök mekaniğinin uygulamasıdır. Bu nesnelerin hareketi genellikle Newton'un hareket kanunları ve Newton'un evrensel çekim yasası ile hesaplanır. Bu, uzay görevi tasarımı ve denetimi altında olan bir çekirdek disiplindir. Gök mekaniği; daha genel olarak yıldız sistemleri, gezegenler, uydular ve kuyruklu yıldızlar gibi kütle çekimi etkisinde bulunan yörünge sistemleri için geçerlidir. Yörünge mekaniği; uzay araçlarının yörüngelerine ait yörünge manevraları, yörünge düzlemi değişiklikleri ve gezegenler arası transferler gibi kavramlara odaklanır ve itici manevralar sonuçlarını tahmin etmek için görev planlamacıları tarafından kullanılır. Genel görelilik teorisi, yörüngeleri hesaplamak için Newton yasalarından daha kesin bir teoridir ve doğru hesaplar yapmak ya da yüksek yerçekimini ihtiva eden durumlar söz konusu olduğunda bazen gereklidir.

Tam diferansiyel denklem veya Sağın diferansiyel denklem fizikte ve mühendislikte sıklıkla kullanılan bir tür adi diferansiyel denklemdir.

Numerov'un yöntemi, birinci mertebeden terimin görünmediği ikinci mertebeden adi diferansiyel denklemleri çözmek için sayısal bir yöntemdir. Dördüncü dereceden doğrusal çok adımlı bir yöntemdir. Yöntem örtüktür, ancak diferansiyel denklem lineer ise açık hâle getirilebilir.