İçeriğe atla

Sonlu alan

Cebirde sonlu alan veya Galois alanı (Évariste Galois'e ithaf edilsin diye bu adla adlandırıldı), sonlu sayıda elemandan oluşan bir cisimdir. Herhangi bir alan olarak düşünülürse sonlu alan, değişme, çarpma, toplama, çıkarma ve (sıfırdan farklı) bölme işlemlerinin tanımlandığı bir kümedir. Sonlu alanlara yaygın örnek, ℤ/3ℤ veya ℤ/7ℤ gibi tam sayı olan asal tam sayılar modülü verilebilir.

Sonlu alanlar yalnızca, (p bir asal sayı ve k pozitif tam sayı olan) pk asal kuvveti için geçerlidir. Her bir asal kuvvet için bu boyuta sahip tek sonlu alan vardır. Bu boyuttaki tüm alanlar izomorfiktir. pk boyutuna sahip bir alanın karakteristiği p dir. Bu, sonuç sıfır olana kadar her elemanın kopyalanarak pye eklenmesi anlamına gelir. Örneğin; ℤ/2ℤ (tam sayı mod 2), 1 + 1 = 0 olduğunda karakteristiği 2 olur. ℤ/5ℤ, 0 = 1 + 1 + 1 + 1 + 1 = 2 + 2 + 2 + 2 + 2 = vb. olduğunda karakteristiği 5 olur.

q kuvvetine sahip bir sonlu alanda XqX polinomunun tüm ögeleri, onun kökleri olur. Böylece q farklı doğrusal faktörleri elde edilir.

Sonlu alanlara, sayılar teorisi, cebirsel geometri, Galois teorisi, sonlu geometri, kriptografi ve kodlama kuramı da dahil matematik ve bilgisayar biliminde çok sık rastlanır.

Bazı küçük sonlu alanlar

+01
0 01
1 10
×01
0 00
1 01

F3

+012
0 012
1 120
2 201
×012
0 000
1 012
2 021

F4

+01αα+1
0 01αα+1
1 10α+1α
α αα+101
α+1 α+1α10
×01αα+1
0 0000
1 01αα+1
α 0αα+11
α+1 0α+11α

F8

Matris tam sayıları modül 2'yi ifade eden sekiz ögeli alan

  öge (0)         öge (1)         öge (2)         öge (3)

  0  0  0         1  0  0         0  1  0         0  0  1
  0  0  0         0  1  0         0  0  1         1  1  0
  0  0  0         0  0  1         1  1  0         0  1  1

  öge (4)         öge (5)         öge (6)         öge (7)

  1  1  0         0  1  1         1  1  1         1  0  1
  0  1  1         1  1  1         1  0  1         1  0  0
  1  1  1         1  0  1         1  0  0         0  1  0

+/  (0) (1) (2) (3) (4) (5) (6) (7)
(0)  0   1   2   3   4   5   6   7
(1)  1   0   4   7   2   6   5   3
(2)  2   4   0   5   1   3   7   6
(3)  3   7   5   0   6   2   4   1
(4)  4   2   1   6   0   7   3   5
(5)  5   6   3   2   7   0   1   4
(6)  6   5   7   4   3   1   0   2
(7)  7   3   6   1   5   4   2   0

x/  (0) (1) (2) (3) (4) (5) (6) (7)
(0)  0   0   0   0   0   0   0   0
(1)  0   1   2   3   4   5   6   7
(2)  0   2   3   4   5   6   7   1
(3)  0   3   4   5   6   7   1   2
(4)  0   4   5   6   7   1   2   3
(5)  0   5   6   7   1   2   3   4
(6)  0   6   7   1   2   3   4   5
(7)  0   7   1   2   3   4   5   6

F9

Matris tam sayıları modül 3'ü ifade eden 9 ögeli alan

 öge (0)         öge (1)        öge (2)

  0  0            1  0            0  1
  0  0            0  1            1  1

 öge (3)         öge (4)        öge (5)

  1  1            1  2            2  0
  1  2            2  0            0  2

 öge (6)         öge (7)        öge (8)

  0  2            2  2            2  1
  2  2            2  1            1  0

+/  (0) (1) (2) (3) (4) (5) (6) (7) (8)
(0)  0   1   2   3   4   5   6   7   8
(1)  1   5   3   8   7   0   4   6   2
(2)  2   3   6   4   1   8   0   5   7
(3)  3   8   4   7   5   2   1   0   6
(4)  4   7   1   5   8   6   3   2   0
(5)  5   0   8   2   6   1   7   4   3
(6)  6   4   0   1   3   7   2   8   5
(7)  7   6   5   0   2   4   8   3   1
(8)  8   2   7   6   0   3   5   1   4

x/  (0) (1) (2) (3) (4) (5) (6) (7) (8)
(0)  0   0   0   0   0   0   0   0   0
(1)  0   1   2   3   4   5   6   7   8
(2)  0   2   3   4   5   6   7   8   1
(3)  0   3   4   5   6   7   8   1   2
(4)  0   4   5   6   7   8   1   2   3
(5)  0   5   6   7   8   1   2   3   4
(6)  0   6   7   8   1   2   3   4   5
(7)  0   7   8   1   2   3   4   5   6
(8)  0   8   1   2   3   4   5   6   7

F16

F16, a + b x + c x2 + d x3 polinomu ile ifade edilir.
a, b, c ve d tam sayı modül 2 dir.
Polinomlar, x4 = 1 + x kuralı kullanılarak x kuvvetleri ile elde edilir.

ö ( 0)        ö ( 1)        ö ( 2)        ö ( 3)
[ 0  0  0  0] [ 1  0  0  0] [ 0  1  0  0] [ 0  0  1  0]

ö ( 4)        ö ( 5)        ö ( 6)        ö ( 7)
[ 0  0  0  1] [ 1  1  0  0] [ 0  1  1  0] [ 0  0  1  1]

ö ( 8)        ö ( 9)        ö (10)        ö (11)
[ 1  1  0  1] [ 1  0  1  0] [ 0  1  0  1] [ 1  1  1  0]

ö (12)        ö (13)        ö (14)        ö (15)
[ 0  1  1  1] [ 1  1  1  1] [ 1  0  1  1] [ 1  0  0  1]

+/   0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_ 8_ 9_10_11_12_13_14_15_
 0_  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
 1_  1  0  5  9 15  2 11 14 10  3  8  6 13 12  7  4
 2_  2  5  0  6 10  1  3 12 15 11  4  9  7 14 13  8
 3_  3  9  6  0  7 11  2  4 13  1 12  5 10  8 15 14
 4_  4 15 10  7  0  8 12  3  5 14  2 13  6 11  9  1
 5_  5  2  1 11  8  0  9 13  4  6 15  3 14  7 12 10
 6_  6 11  3  2 12  9  0 10 14  5  7  1  4 15  8 13
 7_  7 14 12  4  3 13 10  0 11 15  6  8  2  5  1  9
 8_  8 10 15 13  5  4 14 11  0 12  1  7  9  3  6  2
 9_  9  3 11  1 14  6  5 15 12  0 13  2  8 10  4  7
10_ 10  8  4 12  2 15  7  6  1 13  0 14  3  9 11  5
11_ 11  6  9  5 13  3  1  8  7  2 14  0 15  4 10 12
12_ 12 13  7 10  6 14  4  2  9  8  3 15  0  1  5 11
13_ 13 12 14  8 11  7 15  5  3 10  9  4  1  0  2  6
14_ 14  7 13 15  9 12  8  1  6  4 11 10  5  2  0  3
15_ 15  4  8 14  1 10 13  9  2  7  5 12 11  6  3  0

x/   0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_ 8_ 9_10_11_12_13_14_15_
 0_  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 1_  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
 2_  0  2  3  4  5  6  7  8  9 10 11 12 13 14 15  1
 3_  0  3  4  5  6  7  8  9 10 11 12 13 14 15  1  2
 4_  0  4  5  6  7  8  9 10 11 12 13 14 15  1  2  3
 5_  0  5  6  7  8  9 10 11 12 13 14 15  1  2  3  4
 6_  0  6  7  8  9 10 11 12 13 14 15  1  2  3  4  5
 7_  0  7  8  9 10 11 12 13 14 15  1  2  3  4  5  6
 8_  0  8  9 10 11 12 13 14 15  1  2  3  4  5  6  7
 9_  0  9 10 11 12 13 14 15  1  2  3  4  5  6  7  8
10_  0 10 11 12 13 14 15  1  2  3  4  5  6  7  8  9
11_  0 11 12 13 14 15  1  2  3  4  5  6  7  8  9 10
12_  0 12 13 14 15  1  2  3  4  5  6  7  8  9 10 11
13_  0 13 14 15  1  2  3  4  5  6  7  8  9 10 11 12
14_  0 14 15  1  2  3  4  5  6  7  8  9 10 11 12 13
15_  0 15  1  2  3  4  5  6  7  8  9 10 11 12 13 14

F25

F25, a + b√2 sayıları ile ifade edilir. a ve b, tam sayı modül 5 dir.
2 + √2 kuvvetleri ile elde edilir.

ö (0)ö (1)ö (2)ö (3)ö (4)
0 + 0√21 + 0√22 + 1√21 + 4√20 + 4√2
ö (5)ö (6)ö (7)ö (8)ö (9)
3 + 3√22 + 4√22 + 0√24 + 2√22 + 3√2
ö (10)ö (11)ö (12)ö (13)ö (14)
0 + 3√21 + 1√24 + 3√24 + 0√23 + 4√2
ö (15)ö (16)ö (17)ö (18)ö (19)
4 + 1√20 + 1√22 + 2√23 + 1√23 + 0√2
ö (20)ö (21)ö (22)ö (23)ö (24)
1 + 3√23 + 2√20 + 2√24 + 4√21 + 2√2
+0123456789101112131415161718192021222324
0 0123456789101112131415161718192021222324
1 1718631214192252021002316112115139824417
2 2188197413152023621311024171222161410915
3 3619920851416212472241201181323171511102
4 4372010219615172218235130219142418161211
5 5 124821112210716182329246140320151191713
6 6141359221223118171924310171504211622018
7 7191514610231324129182014112816052217321
8 8222016157112414113101921251239170623184
9 9523211716812115214112022361341018072419
10 1020624221817913216315122123471451119081
11 1122171231918101431741613222458156122009
12 1210322822420191115418517142316916713210
13 1301142393121201216519618152427101781422
14 1423012524104222211317620719161381118915
15 1516240136111532322141872182017249121910
16 1611171014721264242315198229211835101320
17 1721121820158313751241620923102219461114
18 1815221319301694148621172110241123205712
19 1913162314204017105159732182211112242168
20 2091417241521501811616108431923122131227
21 2181015181162260191271711954202413314223
22 2224911161921723702013818121065211144153
23 2341101217203182480211491913117622215516
24 2417521113182141919022151020141287233166
×0123456789101112131415161718192021222324
0 0000000000000000000000000
1 0123456789101112131415161718192021222324
2 0234567891011121314151617181920212223241
3 0345678910111213141516171819202122232412
4 0456789101112131415161718192021222324123
5 0567891011121314151617181920212223241234
6 0678910111213141516171819202122232412345
7 0789101112131415161718192021222324123456
8 0891011121314151617181920212223241234567
9 0910111213141516171819202122232412345678
10 0101112131415161718192021222324123456789
11 0111213141516171819202122232412345678910
12 0121314151617181920212223241234567891011
13 0131415161718192021222324123456789101112
14 0141516171819202122232412345678910111213
15 0151617181920212223241234567891011121314
16 0161718192021222324123456789101112131415
17 0171819202122232412345678910111213141516
18 0181920212223241234567891011121314151617
19 0192021222324123456789101112131415161718
20 0202122232412345678910111213141516171819
21 0212223241234567891011121314151617181920
22 0222324123456789101112131415161718192021
23 0232412345678910111213141516171819202122
24 0241234567891011121314151617181920212223

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Asal sayı</span> sadece iki pozitif tam sayı böleni olan doğal sayılardır

Bir asal sayı, yalnızca 1'den büyük olup kendisinden küçük iki doğal sayının çarpımı olarak ifade edilemeyen bir doğal sayıdır. 1'den büyük ve asal olmayan doğal sayılara bileşik sayı adı verilir. Örneğin, 5 bir asal sayıdır çünkü onu bir çarpım olarak ifade etmenin mümkün olan yolları, 1 × 5 veya 5 × 1, yalnızca 5 sayısını içermektedir. Ancak, 4 bir bileşik sayıdır çünkü bu, her iki sayının da 4'ten küçük olduğu bir çarpım şeklindedir. Asal sayılar, aritmetiğin temel teoreminden ötürü sayı teorisi alanında merkezi öneme sahiptir: 1'den büyük her doğal sayı, ya bir asal sayıdır ya da asal sayıların çarpımı olarak, sıralamalarından bağımsız bir şekilde, benzersiz olarak çarpanlarına ayrılabilir.

<span class="mw-page-title-main">Grup teorisi</span> simetrileri inceleyen matematik dalı

Grup teorisi veya Grup kuramı, simetrileri inceleyen matematik dalıdır. Simetri kuramı olarak da adlandırılabilir. Bir nesnenin simetrileri ile kast edilen, nesneye uygulandığında nesneye hiçbir etki olmamış gibi sonuç veren dönüşümlerdir. Her nesnenin en az bir simetrisi vardır: hiçbir şey yapmadan olduğu gibi bırakma dönüşümü. Bahsettiğimiz dönüşümlerin tersleri de vardır ve aradığımız özellikleri sağlarlar. Son olarak da dönüşümlerin art arda yapılması, birleşimli bir işlemdir. Bu üç koşula sırasıyla birim elemana sahip olma, elemenların tersi olma ve grup işleminin birleşmeli olması denir. Bu kavramların matematikte soyutlanması, üzerinde tersinebilir ve bileşme özelliğine sahip ikili bir işlemin tanımlı olduğu kümeler ile yapılır. Daha detaylı açıklamak gerekirse, grup nesnesi bir küme G ve onun üzerinde tanımlı bir işleminden oluşur. Bu operasyonun aşağıdaki şartları sağlaması gereklidir:

10 (on) günlük hayatta kullanılan ana sayı sisteminin temeli olan sayı. Dokuzdan sonra, on birden önce gelir. Roma sayı sisteminde X ile temsil edilir. Neon'un element numarasıdır

11, bir sayı. Sodyumun element numarasıdır.

<span class="mw-page-title-main">Rasyonel sayılar</span>

Rasyonel sayılar, iki tam sayı arasındaki oranı temsil eden, bir pay p ve sıfırdan farklı bir payda q olmak üzere, bir bölme işlemi veya kesir formunda ifade edilebilen sayıları tanımlar. Örneğin, rasyonel bir sayı olarak kabul edilir, bu kapsamda her tam sayı da rasyonel sayılar kategorisindedir. Rasyonel sayılar kümesi, çoğunlukla kalın harf biçimindeki Q veya karatahta vurgusu kullanılarak şeklinde ifade edilir.

<span class="mw-page-title-main">Parite (matematik)</span> hh

Parite, matematikte herhangi bir tam sayının çift ya da tek olması durumudur. Çift sayılar, 2 ile kalansız bölünebilen sayılardır. Tek sayılar ise 2 ile kalansız bölünemeyen sayılardır. Örneğin onluk sistemde 4 ve 8 rakamlarının her ikisi de çift olduğu için "aynı pariteye sahip" kabul edilirler.

▪ Çift doğal sayılar: 0, 2, 4, 6, 8,...
▪ Tek doğal sayılar: 1, 3, 5, 7, 9,...
▪ 2n = 0 eşitliğini sağlayan bir tam sayı mevcuttur: 2 × 0 = 0.
▪ 2n + 1 = 0 eşitliğini sağlayacak bir n tam sayısı yoktur.
▪ Birden fazla basamaklı sayıların birler basamağında 0'ın olması, bu sayıların asal çarpanları arasında 2 ve 5'in olduğunu, dolayısıyla çift sayı olduklarını gösterir.
<span class="mw-page-title-main">Ki-kare dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında ki-kare dağılım özellikle çıkarımsal istatistik analizde çok geniş bir pratik kullanım alanı bulmuştur.

<span class="mw-page-title-main">Matris (matematik)</span>

Matematikte matris veya dizey, dikdörtgen bir sayılar tablosu veya daha genel bir açıklamayla, toplanabilir veya çarpılabilir soyut miktarlar tablosudur. Dizeyler daha çok doğrusal denklemleri tanımlamak, doğrusal dönüşümlerde çarpanların takibi ve iki parametreye bağlı verilerin kaydedilmesi amacıyla kullanılırlar. Dizeylerin toplanabilir, çıkartılabilir, çarpılabilir, bölünebilir ve ayrıştırılabilir olmaları, doğrusal cebir ve dizey kuramının temel kavramı olmalarını sağlamıştır.

<span class="mw-page-title-main">Dizi</span> aynı tip elemanların sıralı listesi (sonlu veya sonsuz)

Dizi, bir sıralı listedir. Bir küme gibi, ögelerden oluşur. Sıralı ögelerin sayısına dizinin uzunluğu denir. Kümenin aksine sıralı ve aynı ögeler dizide farklı konumlarda birkaç kez bulunabilir. Tam olarak bir dizi, tanım kümesi sayılabilen toplam sıralı kümelerden oluşan bir fonksiyon olarak tanımlanabilir. Örneğin doğal sayılar gibi. Diziler bu örnekte olduğu gibi sonlu olabilir. Ya da tüm çift pozitif tam sayılar gibi sonsuz olabilir.

<span class="mw-page-title-main">Birleşme özelliği (küme teorisi)</span> küme teorisinde işlem; bir set koleksiyonunun birleşimi (∪ ile gösterilir), koleksiyondaki tüm farklı öğelerin kümesidir

Küme kuramında, birleşme, bir kümenin tüm ögelerinin topluluğudur ve ∪ ile sembolize edilir.

Bir asal kök modülü n sayılar teorisindeki modüler aritmetikten bir kavramdır. Eğer olan bir tam sayı ise, n formuna göre aralarında asal sayılar mod n'e göre çarpılarak, bir grup oluşturacak şekilde yapılan işlem, veya olarak gösterilir. Bir asal sayı için ve ise, bu grup ancak ve ancak veya 'ya denktir. Bu döngüsel grubun bir üreteci asal kök modülü n veya 'in bir asal elemanı'dır şeklinde tanımlanır.

abc sanısı veya abc konjektürü sayılar teorisindeki bir sanı yani konjektürdür. 1985'te Joseph Oesterlé ve David Masser tarafından ortaya atılmıştır. Biri diğer ikisinin toplamı şeklinde ifade edilen üç tam sayının özellikleri üzerine kurulmuştur. Problemi çözmek için açık bir strateji bulunmadığı halde, sanı bazı ilginç sonuçları sayesinde tanınmıştır.

cal (Unix) Unixte verilen bir ay veya yıl için tarihi basan program

cal, Unix'te verilen bir ay veya yıl için tarihi basan programdır. Eğer komut ile ilgili özel bir seçenek verilmezse o ay bulununlan ayın takvim olarak ekrana basar.

<span class="mw-page-title-main">Sayısal sistem</span> sayıları ifade etmek için gösterim

Sayısal sistem, sayıları temsil eden simgeler için bir yazma sistemi yani matematiksel bir gösterim sistemidir.

<span class="mw-page-title-main">Çarpanlara ayırma</span>

Çarpanlara ayırma, bir polinomun, tam sayının ya da matrisin kendisini oluşturan bileşenlerin çarpımı şeklinde yazılmasıdır. Örneğin 15 sayısı 3 ve 5 asal sayılarının çarpımı şeklinde yazılabilir: 3 × 5 ya da x2 − 4 polinomu (x − 2)(x + 2) şeklinde yazılabilir.

Matematikte, asal kuvvet, bir asal sayının pozitif tam sayı kuvvetidir. Örneğin: 5 = 51, 9 = 32 ve 16 = 24, asal kuvvetlerdir. 6 = 2 × 3, 15 = 3 × 5 ve 36 = 62 = 22 × 32 olduğundan dolayı asal kuvvet değildir.

GF(2) (ayrıca F2, Z/2Z veya Z2 olarak da yazılır), iki ögeli ve en küçük sonlu alandır (Galois field).

Öklid'in teoremi, sayılar teorisinde temel bir ifade olup sonsuz sayıda asal sayı olduğunu ileri sürer. Teoremin iyi bilinen farklı ispatları bulunmaktadır.

<span class="mw-page-title-main">Ferdinand Georg Frobenius</span> Alman matematikçi (1849-1917)

Ferdinand Georg Frobenius, en çok eliptik fonksiyonlar teorisine, diferansiyel denklemlere, sayı teorisine ve grup teorisine yaptığı katkılarla tanınan bir Alman matematikçi. Frobenius-Stickelberger formülleri olarak bilinen, eliptik fonksiyonları yöneten ve bikuadratik formlar teorisini geliştiren ünlü determinantal özdeşlikleriyle tanınır. Ayrıca, fonksiyonların rasyonel yaklaşımları kavramını ilk ortaya atan oydu ve Cayley-Hamilton teoremi için ilk tam kanıtı verdi. Ayrıca, adını modern matematiksel fizikte Frobenius manifoldları olarak bilinen bazı diferansiyel geometrik nesnelere verdi.

Aşağıda Apple Inc. tarafından yayınlanan işletim sistemlerinin bir listesi bulunmaktadır.