İçeriğe atla

Sonik patlama

Ses kaynağı ses hızının 1,4 katı hızında ilerliyor (1.4 Mach). Kaynak oluşturduğu ses dalgalarından daha hızlı hareket ettiği için yayılan dalgalara yön verir.
M = 2,92'de hareket eden bir uçağın ürettiği, 20 derecelik koni açısından hesaplanan bir ses patlaması. Gözlemciler, koninin kenarlarındaki şok dalgası konumlarını geçinceye kadar hiçbir şey duymazlar.
Mach koni açısı
N dalgası imzasını gösteren NASA verileri.[1]

Sonik patlama, bir nesne havada ses hızından daha hızlı hareket ettiğinde oluşan şok dalgalarıyla ilişkilendirilen sestir. Sonik patlamalar, insan kulağına bir patlama ya da gök gürlemesi gibi gelen, muazzam miktarlarda ses enerjisi üretir. Ateşlenen bir merminin patlama sesi veya bir kamçının sesi küçük sonik patlamalar olarak sayılabilir.[2]

Büyük süpersonik uçaklardan kaynaklanan sonik patlamalar özellikle gürültülü ve ürkütücü olabilir, insanları uyandırabilir ve bazı yapılarda küçük hasara neden olabilir. Bu yüzden bu tür uçakların karaların üstünde uçmasına yasak getirildi. Tamamen önlenememekle birlikte, araştırmalar, aracın dikkatle şekillendirilmesiyle, sonik patlamalara bağlı rahatsızlığın kara üzerindeki süpersonik uçuşun pratik bir seçenek haline gelebileceği noktaya kadar azaltılabileceğini göstermektedir. [] Bir sonik patlama sadece bir nesne ses hızını geçtiği anda oluşmaz; ve süpersonik nesnenin etrafındaki her yönden de duyulmaz. Aslında,patlama süpersonik hızlarda hareket ederken ortaya çıkan sürekli bir etkidir. Ancak yalnızca nesnenin arkasında geometrik bir koni şeklinde bir bölgeyle kesişen bir noktada konumlandırılmış gözlemcileri etkiler. Nesne hareket ettikçe, bu konik bölge de onun arkasında hareket eder ve koni gözlemcinin üzerinden geçtiğinde, kısa bir süre patlamayı deneyimleyeceklerdir.

Sebepler

savaş uçağının çıkardığı sonik patlama

Bir uçak havadan geçtiğinde, bir teknenin ardında yarattığı yay ve kıç dalgalarına benzer şekilde, uçağın önünde ve arkasında bir dizi basınç dalgası oluşturur. Bu dalgalar ses hızında hareket eder ve nesnenin hızı arttıkça dalgalar birbirine girer veya sıkıştırılır, çünkü birbirlerinin yolundan yeterince hızlı çıkamazlar. Sonunda ses hızında, Mach 1 olarak bilinen kritik bir hızda hareket eden, deniz seviyesinde ve 20 °C (68 °F)'de hızı yaklaşık 1.235 kilometre/saat (767 mph) olan tek bir şok dalgasında birleşirler.

Normal uçuşta, şok dalgası uçağın burnunda başlar ve kuyrukta biter. Uçağın hareket yönü etrafındaki farklı radyal yönler eşdeğer olduğundan ("normal uçuş" koşulu kabul edildiğinde), şok dalgası, uçağın ucundayken, burun konisine benzer bir Mach konisi oluşturur. Uçuş yönü ile şok dalgası arasındaki yarım açı şu şekilde bulunur:

,

uçağın Mach sayısı()'nın tersi olduğundan uçak ne kadar hızlı seyahat ederse koni de o kadar düzgün ve sivri olur.

Uçağın burnunun bulunduğu bölgedeki basınçta bir yükselme olur, bu yükselme kuyruk bölgesinde negatif basınca varana dek düzgünce azalır, uçak geçtikten hemen sonra basınç aniden normale döner. Bu " yüksek basınç profili" şekli nedeniyle bir N dalgası olarak bilinir. "Patlama" basınçta ani bir değişiklik olduğunda yaşanır; bu nedenle, bir N dalgası, ilki yüksek basınç dalgasının gözlemciye ulaştığı an ve ikincisi basıncın normale döndüğü an olmak üzere iki sonik patlama yaratır. Bu, süpersonik bir uçağın ayırt edici "çift patlamasına" yol açar. Uçak manevra yaparken, basınç dağılımı karakteristik bir U dalgası şekliyle farklı formlara dönüşür.

Patlama, uçak süpersonik olduğu sürece sürekli olarak üretildiğinden, uçağın uçuş yolunu takip eden zeminde dar bir hat oluşturur, açılan bir kırmızı halı gibi gözüktüğünden "sonik halı" olarak bilinir. Genişliği, uçağın yüksekliğine bağlıdır. Patlamanın duyulduğu yerdeki noktadan uçağa olan mesafe, uçağın yüksekliğine ve açısına bağlıdır.

Normal çalışma koşullarında günümüzün süpersonik uçakları için, tepe aşırı basınç, bir N dalgası patlaması için 50 ila 500 Pa (1 ila 10 psf (feet kare başına pound)) arasında değişir. U dalgaları için tepe aşırı basınçlar, N dalgasının iki ila beş katına kadar yükselebilir, ancak bu güçlendirilmiş aşırı basınç, sonik patlamanın geri kalan kısmına kıyasla sadece çok küçük bir alanı etkiler. Şimdiye kadar kaydedilen en güçlü ses patlaması 7.000 Pa (144 psf) idi ve maruz kalan araştırmacıların yaralanmasına neden olmadı. Patlama, 100 fit (30 m) yükseklikte ses hızının hemen üzerinde uçan bir F-4 tarafından üretildi.[3] Son testlerde, daha gerçekçi uçuş koşullarında ölçülen maksimum bom 1.010 Pa (21 psf) idi. Bazı hasarların - örneğin parçalanan bir camın - bir sonik patlamasından kaynaklanma olasılığı vardır. İyi durumda olan binaların 530 Pa (11 psf) veya daha düşük basınçlardan zarar görmemesi gerekir. Ve genelde, toplumun maruz kaldığı ses patlaması 100 Pa'nın (2 psf) altındadır. Sonik patlamadan kaynaklanan yer hareketi nadirdir ve ABD Maden Bürosu ve diğer kurumlar tarafından kabul edilen yapısal hasar eşiklerinin çok altındadır.[4]

Şok dalgasının gücü veya hacmi, hızlanan havanın miktarına ve dolayısıyla uçağın boyutuna ve şekline bağlıdır. Uçak hızı arttırdıkça, şok konisi araç çevresinde daha da sıkılaşır ve çok yüksek hızlarda ve rakımlarda patlama duyulmayacak kadar zayıflar. Patlamanın önden arkaya "uzunluğu", x uçağın uzunluğu olmak üzere'e bağlıdır. Bu nedenle daha uzun uçaklar patlamalarını daha küçük olanlardan daha fazla “yayarlar”, bu da daha güçsüz bir patlamaya yol açar.

Birkaç küçük şok dalgası uçağın diğer bölgelerinde oluşabilir ve genellikle oluşur.

Daha sonraki şok dalgaları birincisinden biraz daha hızlıdır, daha hızlı seyahat eder ve çok daha belirgin bir N dalgası şekli oluşturarak uçaktan uzaklaşan ana şok dalgasına karışır. Bu, patlamanın daha gürültülü duyulmasını sağlayan şokun hem büyüklüğünü hem de "yükselme süresini" en üst düzeye çıkarır. Çoğu uçak tasarımında karakteristik mesafe yaklaşık 40.000 fit (12.000 m)'dir, yani bu yüksekliğin altında ses patlaması "daha yumuşak" olacaktır. Fakat, bu yükseklikteki veya altındaki sürüklenme, süpersonik seyahati özellikle verimsiz hale getirir, bu da ciddi bir sorun oluşturur.

Ölçüm ve örnekler

Uçakların neden olduğu sonik patlamaların basıncı, her bir fit kare başına birkaç pounddur. Daha yüksek irtifada uçan bir araç zeminde daha düşük basınçlar üretecektir, çünkü şok dalgası araçtan uzaklaştıkça yoğunluğu azalır, ancak sonik patlamalar araç hızından daha az etkilenir.

Uçak Hız Rakım Basınç (lbf / ft 2) Basınç (Pa)
SR-71 BlackbirdMach 3+ 80.000 fit (24.000 m) 0.9 43
Concorde (SST)Mach 2 52.000 fit (16.000 m) 1.94 93
F-104 StarfighterMach 1.93 48.000 fit (15.000 m) 0.8 38
Space ShuttleMach 1.5 60.000 fit (18.000 m) 1.25 60
Ref:[5]

Gürültünün Azaltılması

NASA'nın Glenn Araştırma Merkezi'nde süpersonik uçakların ürettiği sonik patlamanın hafifletilmesine yardımcı olabilecek yeni araştırmalar yapılıyor. Testler yakın zamanda mikro dizi akış kontrollü Büyük Ölçekli Düşük Patlama süpersonik giriş modelinde tamamlandı. Bir NASA havacılık mühendisi, Büyük Ölçekli Düşük Patlamalı süpersonik giriş modeliyle bir rüzgar tünelinde resmedilmiştir.

Süpersonik ulaşım (SST) tasarımlarının aktif olarak araştırıldığı 1950'lerin sonlarında, patlama çok şiddetli olsa da, daha yüksek uçarak sorunların önlenebileceği düşünülüyordu. Bu varsayım, Kuzey Amerika XB-70 Valkyrie uçmaya başladığında yanlışlığını kanıtladı ve patlamanın 70.000 feet'de(21.000 m) bile bir sorun yarattığı keşfedildi.). N dalgasının ilk defa karakterize edilmesi bu tesetler sırasındaydı.

Richard Seebass ve Cornell Üniversitesi'ndeki meslektaşı Albert George, sorunu kapsamlı bir şekilde incelediler ve sonunda farklı uçakların ses seviyelerini karakterize etmek için bir " Başarım ölçüsü " (BÖ) tanımladılar. BÖ, uçak ağırlığının ve uçak uzunluğunun bir fonksiyonudur. Bu değer ne kadar düşük olursa, uçak o kadar az patlama oluşturur, yaklaşık 1 veya daha düşük rakamlar kabul edilebilir olarak ele alınır. Bu hesaplamayı kullanarak, Concorde için 1.4 ve Boeing 2707 için 1.9'luk BÖ'ler buldular. Bu nihayetinde SST projelerinin çoğunu siyasetle karışan, kamusal kızgınlıkla lanetledi ve sonuçta bu tür uçakları kullanışsız hale getiren yasalarla sonuçlandı (örneğin ses üstü olarak sadece su üzerinde uçulabiliyordu).

Bir Avustralya kamçisı

Bir boğanın düzgün bir şekilde kullanıldığında çıkardığı ses aslında küçük bir sonik patlamadır. "Kırıcı" olarak bilinen kırbaç ucu, ses hızından daha hızlı hareket eder ve böylece ses patlaması yaratır.[6]

Bir kamçı sap bölümünden kırıcıya doğru daralır. kırıcının tutamak bölümünden çok daha az kütlesi vardır. Kırbaç keskin bir şekilde sallandığında, enerji konik kırbaç uzunluğuna aktarılır. Goriely ve McMillen, bir halkanın gerginlik altındaki konik bir filamandan geçme şeklini içeren fiziksel açıklamanın karmaşık olduğunu gösterdiler.[7]

Kaynakça

  1. ^ Haering (1 Ocak 2005). "Flight Demonstration Of Low Overpressure N-Wave Sonic Booms And Evanescent Waves". AIP Conference Proceedings. 838: 647-650. 13 Şubat 2015 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Mayıs 2020. 
  2. ^ May, Mike (Eylül 2002). "Crackin' Good Mathematics". American Scientist. 90 (5). ss. 415-416. JSTOR 27857718. 
  3. ^ "Analyzing Sonic Boom Footprints of Military Jets, Andy S. Rogers, A.O.T, Inc." 17 Kasım 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 22 Mayıs 2020. 
  4. ^ USAF Fact Sheet 96-03, Armstrong Laboratory, 1996
  5. ^ NASA 11 Mayıs 2020 tarihinde Wayback Machine sitesinde arşivlendi. Armstrong Flight Research Center Fact Sheet: Sonic Booms
  6. ^ May (Eylül 2002). "Crackin' Good Mathematics". American Scientist. 90 (5): 415-416. 
  7. ^ Alain Goriely and Tyler McMillen (2002). "Shape of a Cracking Whip" (PDF). Physical Review Letters. 88 (12): 244301. 30 Eylül 2019 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 22 Mayıs 2020. 

İlgili Araştırma Makaleleri

Klasik mekanikte momentum ya da devinirlik, bir nesnenin kütlesi ve hızının çarpımıdır; (p = mv). Hız gibi, momentum da vektörel bir niceliktir, yani büyüklüğünün yanı sıra bir yöne de sahiptir. Momentum korunumlu bir niceliktir ; yani bu, eğer kapalı bir sistem herhangi bir dış kuvvetin etkisi altında değilse, o kapalı sistemin toplam momentumunun değişemeyeceği anlamına gelir. Momentum benzer bir konu olan açısal momentum ile karışmasın diye, bazen çizgisel momentum olarak da anılır.

<span class="mw-page-title-main">Bomba</span> yakıcı ve yıkıcı maddelerle doldurulmuş, türlü büyüklükte patlayıcı

Bomba, içi patlayıcı ve yanıcı maddeyle dolu, bir ateşleme düzeneğiyle donatılmış, çeşitli şekillerde bulunan yok edici patlayıcı silah. Son derece ani ve şiddetli bir enerji salınımı sağlamak için patlayıcı bir kimyasalın ekzotermik reaksiyonunu kullanır. Patlamalar, esas olarak, zeminden ve atmosferden iletilen mekanik stres, basınçla yönlendirilen mermilerin çarpması ve nüfuz etmesi, basınç hasarı, şarapneller ve patlamanın oluşturduğu etkiler yoluyla hasar verir. Sözcük, Latince bombus'tan gelir. Yunanca βόμβος romanlaştırılmış bombos'tan gelir, 'patlayan' ve 'uğultu' anlamlarına gelen onomatopoetik bir terimdir.

<span class="mw-page-title-main">Ses hızı</span>

Ses hızı, bir ses dalgasının esnek bir ortamda hareket ederken birim zamanda kat ettiği mesafedir. havada, deniz seviyesinde ve 20 °C (santigrat) sıcaklıkta 343.2 m/s olarak alınır.

<span class="mw-page-title-main">Kanat profili</span>

Kanat profili veya aerofoil, kanat, yelken, dümen, pervane kanadı, rotor veya türbin gibi bir akışkan içindeki hareketi kaldırma kuvveti oluşturabilen nesnenin kesit şeklidir.

<span class="mw-page-title-main">Prandtl-Glauert tekilliği</span>

Prandtl-Glauert tekilliği, atmosfer basıncındaki ani bir düşüşün oluşumu, ses hızında yol alan bir uçağın etrafını saran yoğunlaşma bulutunun görünür olmasının nedeni olarak kabul edilir. Bu aerodinamikteki matematiksel tekilliğin bir örneğidir.

<span class="mw-page-title-main">Aerodinamik</span> Fizik terimi ve bilim dalı

Aerodinamik, hareket eden katı kütlelerin havayla etkileşimlerini inceleyen bilim dalıdır. Aerodinamik sözcüğü Yunancadan gelmiş olup bu bilim dalı havanın hareketi ile ilgilidir. Parçalı olarak katı bir cisim ile irtibata geçmiş olması, havanın hareketi ve uçağın kanadı gibi, buna örnek olarak gösterilebilir. Aerodinamik akışkan dinamiği ve gaz dinamiğinin bir alt dalıdır ve aerodinamiğin birçok bakış açısı, teorisi bu alanlarda ortaktır. Aerodinamik genellikle gaz dinamiği için kullanılır; gaz dinamiğinin aerodinamikten farkı, tüm gazlar için çalışması ve aerodinamik gibi yalnızca hava ile sınırlanmamış olmasıdır.

<span class="mw-page-title-main">Dikeyhız</span> nesne hızının, nesne ile nokta arasındaki yarıçapı birleştiren yöne işaret eden bileşeni

Dikey hız, bir hedefin bir gözlemciye göre iki nokta arasındaki vektörel yer değiştirme miktarının değişim hızıdır. Hedef-gözlemci izafi hızının, iki noktayı birleştiren izafi yön veya görüş çizgisi üzerindeki vektörel izdüşümü olarak tanımlanır. Daha basitçe, bir hedefin bir gözlemciye göre, görüş çizgisi boyunca yaklaşma veya uzaklaşma hızıdır.

Genlik, periyodik harekette maksimum düzey olarak tanımlanabilir. Genlik, bir dalganın tepesinden çukuruna kadar olan düşey uzaklığın yarısıdır. Genlik kavramı ışık, elektrik, radyo dalgaları gibi konuları da kapsayan fen bilimleri alanında kullanılır.

<span class="mw-page-title-main">Kritik Mach sayısı</span>

Aerodinamikte, bir hava taşıtının kritik Mach sayısı kanattaki küçük bir bölge üzerindeki akışın ses hızına ulaştığı en küçük mach sayısıdır.

<span class="mw-page-title-main">Hız</span> vektörel bir fiziksel nicelik

Hız, bir nesnenin hareket yönü ile birlikte olan süratini ifade eder. Hız, cisimlerin hareketini tanımlayan bir klasik mekanik dalı olan kinematikte temel bir kavramdır.

Aerodinamik bölümünde bahsedilen aerodinamik sürüklenim, bir akışkan yönünde hareket halinde olan herhangi bir katı cisme etki eden akışkan sürüklenim kuvvetine denir. Cisim baz alındığında bu kuvvet cismin yüzeyine etki eden basınç dağılımlarından(Dp) ve cisme etki eden kayma kuvvetlerinden(akışkanlığın sonucu [Df]) meydana gelir. Akışın özelliklerine göre hesaplama yapıldığında sürüklenim kuvveti 3 temel birime bağlıdır : şok dalgaları, girdaplar ve akışkanlık.

Akışkanlar dinamiğinde, sürüklenim bir sıvı içerisinde hareket eden bir cismin hareket yönüne zıt yönde etki eden kuvvet topluluğuna denir. Bu kuvvet iki sıvı yüzeyi arasında veya bir katı ve bir sıvı yüzeyi arasında olabilir. Diğer durdurucu kuvvetler nazaran sürüklenim kuvveti hıza bağlıdır. Bir sıvının akış yönü hizasında bulunan katı bir cisme göre, sürüklenim kuvvetleri sıvının hızını her zaman azaltır.

<span class="mw-page-title-main">Dalga (fizik)</span> uzayda ve maddeden geçen salınım

Dalga, bir fizik terimi olarak uzayda ve maddede yayılan ve enerjinin taşınmasına yol açan titreşime denir. Dalga hareketi, orta parçaların yer değişimi sıklıkla olmadan, yani çok az ya da hiç kütle taşınımı olmadan, enerjiyi bir yerden başka bir yere taşır. Dalgalar sabit konumlarda oluşan titreşimlerden oluşurlar ve zamanla nasıl ilerlediğini gösteren bir dalga denklemi ile tanımlanırlar. Bu denklemin matematiksel tanımı dalga çeşidine göre farklılık gösterir.

<span class="mw-page-title-main">Boyuna dalga</span>

Boyuna dalgalar içerisinde ortam yerdeğiştirmesinin giden dalgayla aynı veya zıt yönde olduğu dalgalardır. Mekanik boyuna dalgalara ortamda ilerlerken kompresyon ve seyreltme ürettikleri için bunlara kompresyon dalgası veya basınç dalgası da denilmektedir. Diğer başlıca dalga tipi, içerisinde ortam yerdeğiştirmesinin yayılma doğrultusuna dik açı yaptığı enine dalgadır. Enine dalgalara "t dalgaları" veya "kesme dalgaları" da denilmektedir.

<span class="mw-page-title-main">Roket motoru</span>

Roket motoru, genellikle yüksek sıcaklıktaki gaz olan yüksek hızlı itici bir sıvı jeti oluşturmak için tepkime kütlesi olarak depolanmış roket itici gazlarını kullanır. Roket motorları, Newton'un üçüncü yasasına göre kütleyi geriye doğru fırlatarak itme üreten tepki motorlarıdır. Çoğu roket motoru, gerekli enerjiyi sağlamak için reaktif kimyasalların yanmasını kullanır, ancak soğuk gaz iticileri ve nükleer termal roketler gibi yanmayan biçimleri de mevcuttur. Roket motorları tarafından tahrik edilen araçlara genellikle roket denir. Roket araçları, çoğu yanmalı motorun aksine kendi yükseltgen taşır, bu nedenle roket motorları, uzay aracını ve balistik füzeleri itmek için bir boşlukta kullanılabilir.

<span class="mw-page-title-main">Göreli Doppler etkisi</span>

Relativistik Doppler Etkisi ya da Göreli Doppler etkisi, adını ünlü bilim insanı ve matematikçi Christian Andreas Doppler'dan almakta olup, kısaca dalga özelliği gösteren herhangi bir fiziksel varlığın frekans dalga boyu Dalga boyu, bir dalga görüntüsünün tekrarlanan birimleri arasındaki mesafedir. Yaygın olarak Yunanca lamda (λ) harfi ile gösterilmektedir. hareketli bir gözlemci tarafından farklı zaman ve/veya konumlarda farklı algılanması olayıdır. Bu da göreli olduğunu belirtir. Herhangi bir A konumundan B konumuna gitmek icin fiziksel bir dalga ortamı'na ihtiyaç duyan dalgalar icin Doppler Etkisi hesaplamaları yapılırken, dalga kaynağı ve gözlemcinin birbirine göre konum, yön ve hızlarının yanında dalganın içinde veya üzerinde hareket ettiği dalga ortamının da fiziksel yapısı dikkate alınmak zorundadır. Eğer söz konusu dalga herhangi bir A konumundan B konumuna gitmek için fiziksel bir dalga ortamına ihtiyaç duymuyor ise Doppler Etkisi hesaplamalarında sadece dalga kaynağının ve gözlemcinin birbirine göre birim zamandaki konumlarının değerlendirilmesi yeterlidir. Göreli doppler olayı değişikliği olduğu frekansa ışık kaynağının göreceli hareketine göredir ve, Göreli Doppler etkisi relativistik olmayan farklı Doppler etkisi denklemleri dahil olarak zaman genişlemesi etkisini özel görelilik ve referans noktası olarak yayılma ortamı dahil değildir. Lorentz simetri gözlenen frekanslar için toplam farkı anlatır.

<span class="mw-page-title-main">Şok dalgası</span>

Şok dalgası, fizikte bir akışkandaki yerel ses hızından çok daha hızlı hareketli bir dalga türüdür. Normal bir dalga gibi, şok dalgası da enerji taşır ve bir ortam vasıtasıyla yayılabilir. Bununla birlikte, basıncın, sıcaklığın ve ortamın yoğunluğunda ani, neredeyse süreksiz bir değişim ile karakterize edilir. Süpersonik akışlarda, genişleme, Prandtl-Meyer genişletme fanı olarak da bilinen bir genişletme fanı ile sağlanır.

<span class="mw-page-title-main">Ses duvarı</span>

Ses duvarı, aerodinamik sürtünmedeki ani artış ve ses hızına yaklaşıldığında bir uçak veya başka bir nesnenin yaşadığı istenmeyen etkilerdendir. Uçak ses hızına yaklaşmaya başladığında, bu etkinin daha yüksek hızlara ulaşmayı çok zor veya imkânsız hale getiren bir engel oluşturduğu görülmüştür. "Ses duvarı" terimi günümüzde hâlâ süpersonik hıza ulaşan uçakları ifade etmek için kullanılmaktadır.

<span class="mw-page-title-main">P dalgası</span>

AP dalgası, sismolojide sismik dalgalar olarak adlandırılan iki ana elastik cisim dalgasından biridir. P dalgaları diğer sismik dalgalardan daha hızlı hareket eder ve bu nedenle bir depremden etkilenen herhangi bir yere veya bir sismografa ulaşan ilk sinyaldir. P dalgaları gazlar, sıvılar veya katılar yoluyla iletilebilir.

<span class="mw-page-title-main">Yay şoku</span> Manyetize gezegenler için yıldız rüzgarı hızının, manyetopoza yaklaşması sonucu ani bir şekilde düştüğü sınır

Astrofizikte yay şoku, astrofiziksel bir nesne manyetosferinin güneş rüzgarı gibi yakındaki akışkan ortam plazmasıyla etkileştiği zaman oluşur. Dünya ve diğer manyetize gezegenler için yıldız rüzgarı hızının, manyetopoz'a yaklaşması sonucu ani bir şekilde düştüğü sınırdır. Yıldızlar için bu sınır genellikle, yıldız rüzgarının yıldızlararası ortamla buluştuğu astrosferin kenarıdır.