İçeriğe atla

Soliton

Laboratuvar ortamındaki tekli dalga, dalga kanalı

Matematikte ve fizikte, soliton sabit bir hızda yayılım gösterirken kendi şeklini koruyan ve kendi kendini güçlendiren tekil dalgalardır (dalga paketi ya da nabız dalgası).Solitonlar, boşluktaki dağıtıcı ve doğrusal olmayan etkilerin birbirini iptal etmesiyle oluşmuştur. (“Dağıtıcı etkiler” kavramı ile, dalgaların hızının frekansa göre değiştiği belirli sistemler kastedilmektedir.) Solitonlar, fiziksel sistemleri tanımlamak için kullanılan doğrusal olmayan dağıtıcı kısmi ayrımsal eşitlilklerin yayılma sınıfının çözümleri olarak bulunmuuştur.

Soliton terimi, ilk olarak 1834 yılında, İskoçya, Union Canal’da yalnız yaşayan John Scott Russell tarafından tanımlanmıştır. John Scott Russell, dalga deposu adlı olguyu tekrar üretmiş ve buna “çevrimli dalga” adını vermiştir.

Tanımı

Solitona kararlaştırılmış tek bir tanım bulmak oldukça zordur. Drazin & Johnson solitonlara şu üç özelliği atfetmişlerdir:

  1. Solitonlar kalıcı biçimlerdir;
  2. Bölgeler dahilinde sınırlandırılmışlardır;
  3. Diğer solitonlarla etkileşime geçebilirler ve patlamadan, faz kaymasına uğramaları dışında, değişmeden kurtulabilirler.

Daha resmi tanımlar vardır, ancak azımsanmayacak oranda matematik içerirler. Dahası, bazı bilim insanları soliton terimini bu üç özelliğe sahip olmayan bir olay olarak tanımlarlar (örneğin; doğrusal olmayan optikteki ‘ışık mermileri’, etkileşim anında enerji kaybettiklerinden soliton olarak adlandırılırlar.)

Açıklaması

Hiperbolik Sekant. Su dalgaları için zarf solitonu. mavi çizgiler taşıyıcı dalgalar, kırmızı çizgiler zarf dalgaları

Saçılım ve doğrusal olmama kalıcı ve yeri belirlenmiş dalga biçimlerini üretebilmek için etkileşebilirler. Cam içinde hareket eden ışığın eğilimini ele alalım. Bu eğilimin, farklı frekanslardaki ışığı içerdiği düşünülebilir. Cam, dağılım gösterdiğinden farklı frekanslar farklı hızlarda hareket edecek ve bu yüzden zamanla eğilim değişime uğrayacaktır. Ancak, Kerr etkisi de doğrusal olmayan bir etkidir: belirli bir frekansta, maddenin kırılma özelliğine sahip dizini ışığın genliğine ya da dayanımına bağlıdır. Eğer eğilim gereken şekle sahipe, Kerr etkisi dağılım etkisini iptal eder ve eğilimin şekli zamanla değişime uğramaz; bu da solitonu oluşturur. Daha detaylı bilgi için optikte solitonlar araştırılabilir.

Çözülebilir birçok model, Korteweg- de Vries ve doğrusal olmayan Schrödinger, birleştirilmiş doğrusal olmayan Schrödinger ve sinüs- Gordon eşitlikleri dahil çok fazla çözüme sahiptir. Soliton çözümleri tipik olarak saçılım dönüşümü ve dönüşümün kararlılığın alan eşitliklerinin tam olma niteliklerinin tersinin hesaplamalarıyla elde edilebilir. Bu eşitliklerin matematiksel kuramı, matematiksel araştırma alanlarında oldukça ortada ve aktif bir konudur.

Severn Nehri de dahil bazı nehir olaylarının dalgası, bazı gelgit oyuklarını oluşturur bunlar dalgalı sıçrama yaparlar: çözümleri dizisi tarafından takip edilen dalga cephesi. Denizin altındaki içsel dalgalar gibi okyanussal piklonikleri yayan deniz yatağı yerbetimi tarafından başlatılmış örneklerde ise başka çözümler oluşur. Ayrıca, doğrusal geniş tüp bulutlarını üreten evirtim katmanları sıcaklığında gezinen ve basınç çözümlerine sahip olan Carpentaria Körfezi’nin gündüzsefası bulutu gibi atmosferik çözümler de vardır. Sinirbilimindeki en yeni ve henüz kabul edilmemiş olan çözüm modeli nöronları sinyallerin taşınmasını sağlayan basınç solitonları olarak açıklamaya çalışır.

Bir ilingesel soliton, aynı zamanda, “önemsiz çözüm” denilen ilingesel kusurun çürümeye karşı kararlı, kısmi ayrımsal denklemlerinin bir dizi olarak çözümüdür. İlingesel sabitlere göre soliton kararlılığının tam olma niteliği alan eşitliklerine göre daha fazladır. The constraints arise almost always because the differential equations must obey a set of boundary conditions, and the boundary has a non-trivial homotopy group, preserved by the differential equations. Ayrımsal denklemlerin sınır koşulları bir dizi şarta uymak durumundadır, çünkü kısıtlamalar ayrımsal denklemler tarafından korunmuş herhangi bir önemsiz olmayan homotopi gruplarına sahip değildir. Böylece, ayrımsal denklem çözümleri homotopi sınıflarına ayrılabilir. Homotopi sınıflarında, herhangi bir çözüm haritası gösterecek devamlı dönüşüm yoktur Çözümler birbirlerinden kesinlikle ayırılır ve aşırı büyük kuvvetlerle bile karşılaşsalar kendi bütünlüklerini sağlarlar. İlingesel soliton örnekleri, kristal kafesteki altüst olmuş vidaları içerir, Dirac sicimi ve elektromanyetizmdeki manyetik tek kutbu, kuantum alan kuramındaki Skyrmion ve Wess Zumino Witten modeli, sıkıştırılmış madde fiziğindeki manyetik skyrmion, kozmik sicimler ve kozmolojideki bilgi alanı duvarlarını içerir.

Tarihi

1834 yılında, John Scott Russell kendi dönüşüm dalgalarını açıklar. Scott Russell’ın kendi sözleriyle keşif şöyledir: Geminin hareketini gözlemlerken aynı zamanda bir çift atın dar kanalda hızlıca sürüklendiğini de gözlemliyordum, bot bir anda durduğunda – kanaldaki suyun kütlesi tekrar hareketi sağladı; şiddetli çalkaşlanma durumu geminin burun kısmında birikmişti, daha sonra bir anda su öbeği düzgünce geride kalmaya başladı ve bu da hızın küçülmesine ya da kanalda belirli belirsiz bir değişikliğe neden olmuştu. At sırtından onu takip ettim ve hala dönerken saatte sekiz ya da dokuz mil oranında bir hızla onu solladım, asıl şekil otuz fit uzunluğunda ve bir fite bir fit yarı uzunluğundaydı. Yüksekliği giderek azalmıştı ve bir ya da iki mil takipten sonra, kanalın dönemeçlerinde onu kaybetmiştim. Böylece, 1834 yılının Ağustos ayında, Dönüşüm Dalgası adını verdiğim tekil ve güzel olay hakkında ilk görüşmemi gerçekleştirmiş olmuştum.

Scott Russell bu dalgaların kuramsal ve pratik araştırmaları yapmak için biraz zaman geçirmiştir. Evinde dalga depoları inşa etmiş ve bazı anahtar özellikler keşfetmiştir:

  • Dalgalar kararlıdır ve çok uzak mesafeleri kat edebilirler. (normal dalgalar düzleşme eğilimindedirler ya da dikleşme ve yuvarlanma.
  • Hız dalganın boyuna bağlıdır, genişlik ise dalganın derinliğine bağlıdır.
  • Asla birleştirilemeyecek dalgaların aksine – iki dalganın birleşmesi durumu yerine çok küçük dalgalar daha büyük olan dalga tarafından geçilir.
  • Bir dalga, su derinliği için çok büyük ise, bu dalgayı iki büyük ve bir küçük parçaya böler.

Scott Russell’ın deneysel çalışmaları, Newton’nın ve Daniel Bernuolli’nin hidrodinamik kuramlarına göre farklılıklar göstermiştir. Scott Russell’ın deneysel gözlemleri su dalgası kuramlarının varlığı tarafından açıklanamadığından, George Biddell Airy ve George Stokes bu çalışmaları anlamakta güçlük çekmiştir. Çağdaşları ise bu kuramı genişletebilmek için girişimlerde bulunmuşlar ancak Joseph Boussinesq ve Lord Rayleigh’in 1870’li yıllarda yayımladığı kuramsal çözümlemelere kadar bu konuda herhangi bir başarı sağlanamamıştır. 1895’te Diederik Korteweg ve Gustav de Vries, Korteweg–de Vries eşitlikleri olarak bilinen ve tekli dalga ve periyodik knoydial dalga çözümlemeleri çalışmalarını yayımlamışlardır.

Uzun kütleçekimi dalgalarının model eşitliği olan Benjamin–Bona–Mahony’ye göre ikili tek dalganın geçişini gösteren animasyon. Tekli dalgaların dalga yüksekliği 1.2 ve 0.6 ve hızları 1.4 ve 1.2’dir. Üsteki grafik ortalama hızla hareket eden tekli dalganın referans çerçevesidir. Alltaki grafik ise, farklı dikey çizelgelerle oluşmuş durum referans çerçevesidir. Bu yüzden, BBM eşitliklerindeki solitonlar ile tekli dalga solitonları farklıdır.

1965 yılında, Bell Laboratuvarlarından Norman Zabusky ve Princeton Üniversitesi’nden Martin Kruskal ilk olarak, sonlu fark yaklaşımını kullanarak Korteweg–de Vries eşitliklerindeki ortamın soliton davranışlarını ispat etmişlerdir. Ayrıca, bu davranışın Fermi, Pasta ve Ulam’ın çalışmalarını nasıl açıkladığını da göstermişlerdir.

1967 yılında, Gardner, Greene, Kruskal ve Miura ters saçılım dönüşümünü, KdV eşitliğinin analitik çözümü ile sağlamışlardır. Peter Lax’ın Lax çiftleri ve Lax eşitliğindeki çalışmaları da birçok bağlantılı soliton ve üretim sistemlerine kadar genişletilmiştir.

Dikkat edilmelidir ki, solitonlar tanımsal olarak; başka solitonların hız ve şekil olarak değiştirilmemiş hallerinin çarpışmasıyla oluşur. Yani, su yüzeyindeki tekli dalgalar tam olarak soliton değillerdir – iki adet tekli dalganın etkileşimi sonucunda genliklerinde küçük bir değişim olur ve titreşimli kalıntı ise geride kalır.

Fiber optikte solitonlar

YılKeşif
1973 AT&T Bell Laboratuvarları’ndan, Akira Hasegawa kuralsız saçılım ve özhal geçişindeki dengeden dolayı solitonların ışıksal fiberlerde de var olabileceğini söyleyen ilk isim olmuştur. Ayrıca, 1973 yılında Robin Bullough ışıksal solitonların varlığıyla alakalı ilk matematiksel raporu hazırlayan insandır. Robin Bullough, aynı zamanda, soliton temelli aktarım sisteminin, ışıksal haberleşmenin hızını ve performansını yükselteceğini söylemiştir.
1987 1987 yılında ışıksal fiberdeki karanlık solitonların yayılımının ilk deneysel gözlemlerini ise Brüksel ve Limoges Üniversiteleri yapmıştır
1988 Linn Mollenauer ve takımı, Raman etkisi adlı görüngüyü kullanarak 4000 kilometreden fazla soliton titreşimi ilettiler ve fiberde ışıksal kazanç sağlamak amacıyla yapılan bu deney, ismini 1920'li yıllarda ilk tanımlamayı yapan Sir C.V. Raman’dan aldı.
1991 Bell Laboratuvarları’ndaki araştırma takımı, erbiyum ışıksal fiber yükselteçlerini kullanarak, 14000 kilometreden fazla bir alanda hatasız 2,5 gb soliton iletimi yapmayı başardılar. Işıksal yükselteçlerle eşleşen aktif erbiyumlu pompa lazerleri ışık titreşimlerine enerji sağladı.
1998 Fransa İletişim R&D Merkezi’nde Thierry Georges ve takımı, farklı dalga boylarındaki ışıksal solitonlar birleştirerek, saniyede 1tb’lık (saniyede 1.000.000.000.000 bilgi) bilgi aktarımı gerçekleştirdiler. Ancak, yukarıdaki etkileyici deneyler, Gordon–Haus seğirmesi nedeniyle oluşan karasal ya da denizaltı sistemlerinde gerçek bir soliton sistem konuşlanması reklamına dönüşemedi, GH seğirmesi, geleneksel dönüşsüz-sıfıra sıfır dizi örnekleriyle karşılaştırıldığında, tecrübe ve pahalı çözümler gerektiren dalgaboyu-bölme çokdüzeyleme soliton iletimi ile itici bir ortamda gerçekleşmesi gerekir. Dahası, olası bir salınımsal etkili faz-çözüm-anahtar/QAM formatları soliton iletimi, Gordon–Mollenauer etkisi nedeniyle gelecekte uygulanma ihtimali azalmış bir çalışma oldu. Sonuç olarak, uzun mesafe fiberoptik iletim solitonu laboratuvar merakı olarak kaldı.
2000 Cundiff, fiber oyuğu olan SESAM boyunca kilitli pasif şekilli çiftkırılımlı vektör solitonlarının varlığını öngörmüştür. Bu tür bir vektör solitonun kutuplaşma durumu, oyuk katsayılarına bağlı olarak dönüşlü ya da kilitli olabilir.
2008 D.Y. Tang, birçok deney ve sayısal benzetimlerden yola çıkarak yüksek-mertebeli vektör solitonlarının yeni bir biçimini gözlemlemiştir. Farklı vektör solitonları ve vektör solitonlarının kutuplaşma durumu bu grup tarafından araştırılmıştır.

Biyolojide solitonlar

Solitonlar DNA ve proteinlerde oluşabilirler. DNA ve proteinlerdeki düşük frekanslı toplu hareketlerle alakalıdır. Son zamanlarda sinirbiliminde geliştirilmiş olan model, nöron sinyallerinin, solitonlar biçiminde davranışlar sergiledikleri söylemektedir.

Mıknastıslardaki solitonlar

Mıknatıslarda da değişik tiplerde solitonlar ve doğrusal olmayan dalgalar vardır. Bu manyetik solitonlar, klasik düzlemsel olmayan ayrımsal eşitliklerin kesin çözümleridirler. — manyetik eşitlikler; Landau- Lifshitz eşitliği, uzay-zaman Heisenberg modeli, Ishimori eşitliği, doğrusal olmayan Schrödinger eşitliği ve diğerleri…

Biyonlar

İki solitonun birbirine bağlı halleri biyon ya da bağlı sistemlerin belirli aralıklarla sallandığı “ara” sistemleri olarak adlandırılabilir.

Alan kuramında, Biyonlar genellikle Born-Infeld modelinin çözümü olarak anılır. Bu isim G.W. Gibson tarafından, geleneksel çözümlerden Born Infeld modelinin çözümünü ayırt etmek için ortaya atılmış ve bazı fiziksel sistemlerdeki ayrımsal denklemlerin sonlu enerji ve düzenli çözümleri olarak anlaşılmıştır. Düzen kelimesi burada kaynak taşımadan düzgün bir çözüm bulma anlamında kullanılır. Ancak, Born-Infeld modelinin çözümü Dirac-delta fonksiyonunun kaynaklarının orijindeki biçimi olarak yayımlanır. Bunun sonucu olarak orijin noktasında tekillik olarak açığa çıkarlar (elektrik alanı her yerde düzenli olmasına rağmen). Bazı fiziksel içeriklerde (örneğin sicim kuramı)soliton sınıflandırmasındaki özel isimleri tanıtma yarayabilecek olan bu özellik önemli olabilir. Öte yandan, kütleçekimi eklendiğinde (yani Born-Infeld modelinin eşleşmesini genel görelilikte incelediğimizde) buna karşılık gelen solitonun ismi Ebiyondur, “E” Einstein’ın E’si anlamında kullanılmıştır.

Ayrıca bakınız

  • Kompekton, sıkı desteğe sahip soliton.
  • Anormal dalgalar, Peregrine solitonu ile alakılı olan ve doğrusal olmayan özellikleri ile sınırlandırılmış yoğun dalgalar olan ara dalgalarını içeren bir solitondur.
  • Nematikon
  • Oskilon
  • Peakon, türevlenebilir tepe sahip olmayan soliton.
  • Soliton (ilingesel)
  • İlingesel olmayan soliton, Kuantum Alan Kuramı
  • Q-topu, ilingesel olmayan soliton
  • Solitonun itme yayılımı modeli
  • İlingesel kuantum sayısı
  • Sine-Gordon Denklemi
  • Doğrusal olmayan Schrodinger denklemi
  • Vektör Solitonu
  • Soliton dağılımı
  • Tom yıldırımı için soliton hipotezi, by David Finkelstein yapısının oluşumu

Kaynakça

İngilizce Vikipedi

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

<span class="mw-page-title-main">Elektromanyetik radyasyon</span>

Elektromanyetik radyasyon, elektromanyetik ışınım, elektromanyetik dalga ya da elektromıknatıssal ışın bir vakum veya maddede kendi kendine yayılan dalgalar formunu alan bir olgudur. Elektromanyetik dalgalar, yüklü bir parçacığın ivmeli hareketi sonucu oluşan, birbirine dik elektrik ve manyetik alan bileşeni bulunan ve bu iki alanın oluşturduğu düzleme dik doğrultuda yayılan, yayılmaları için ortam gerekmeyen, boşlukta c ile yayılan enine dalgalardır. Elektromanyetik dalgalar, frekansına göre değişik tiplerde sınıflandırılmıştır. Bu tipler sırasıyla :

<span class="mw-page-title-main">Diferansiyel denklem</span>

Matematikte, diferansiyel denklem, bir ya da birden fazla fonksiyonu ve bunların türevlerini ilişkilendiren denklemdir. Fizik, kimya, mühendislik, biyoloji ve ekonomi alanlarında matematiksel modeller genellikle diferansiyel denklemler kullanılarak ifade edilirler. Bu denklemlerde, fonksiyonlar genellikle fiziksel ya da finansal değerlere, fonksiyon türevleriyse değerlerin değişim hızlarına denk gelir.

Schrödinger denklemi, bir kuantum sistemi hakkında bize her bilgiyi veren araç dalga fonksiyonu adında bir fonksiyondur. Dalga fonksiyonunun uzaya ve zamana bağlı değişimini gösteren denklemi ilk bulan Erwin Schrödinger’dir. Bu yüzden denklem Schrödinger denklemi adıyla anılır. 1900 yılında Max Planck'ın ortaya attığı "kuantum varsayımları"nın ardından, 1924'te ortaya atılan de Broglie varsayımı ve 1927'de ortaya atılan Heisenberg belirsizlik ilkesi bilim dünyasında yeni ufukların doğmasına sebep olmuştur. Bu gelişmeler Max Planck'ın kuantum varsayımları ve Schrödinger'in dalga mekaniği ile birleştirilerek kuantum mekaniğini ortaya çıkarmıştır.

<span class="mw-page-title-main">Dalga fonksiyonu</span>

Kuantum fiziğinde dalga fonksiyonu izole bir kuantum sistemindeki kuantum durumunu betimler. Dalga fonksiyonu karmaşık değerli bir olasılık genliğidir ve sistem üzerindeki olası ölçümlerin olasılıklarının bulunmasını sağlar. Dalga fonksiyonu için en sık kullanılan sembol Yunan psi harfidir ψ ve Ψ.

<span class="mw-page-title-main">Kuantum mekaniği</span> atom altı seviyede çalışmalar yapan bilim dalı

Kuantum mekaniği veya kuantum fiziği, atom altı parçacıkları inceleyen bir temel fizik dalıdır. Nicem mekaniği veya dalga mekaniği adlarıyla da anılır. Kuantum mekaniği, moleküllerin, atomların ve bunları meydana getiren elektron, proton, nötron, kuark, gluon gibi parçacıkların özelliklerini açıklamaya çalışır. Çalışma alanı, parçacıkların birbirleriyle ve ışık, x ışını, gama ışını gibi elektromanyetik ışınımlarla olan etkileşimlerini de kapsar.

<span class="mw-page-title-main">Sayısal analiz</span>

Sayısal analiz, diğer adıyla nümerik analiz veya sayısal çözümleme, matematiksel analiz problemlerinin yaklaşık çözümlerinde kullanılan algoritmaları inceler. Bu nedenle birçok mühendislik dalı ve doğa bilimlerinde önem arz eden sayısal analiz, bilimsel hesaplama bilimi olarak da kabul edilebilir. Bilgisayarın işlem kapasitesinin artması ile gündelik hayatta ortaya çıkan birçok sistemin matematiksel modellenmesi mümkün olmuş ve sayısal analiz algoritmaları burada ön plana çıkmıştır. 21. yüzyıldan itibaren bilimsel hesaplama yöntemleri mühendislik ve doğa bilimleri ile sınırlı kalmamış ve sosyal bilimler ile işletme gibi alanları da etkilemiştir. Sayısal analizin alt başlıklarına adi diferansiyel denklemlerin yaklaşık çözümleri ve özellikle veri biliminde önem taşıyan sayısal lineer cebir ile optimizasyon örnek gösterilebilir.

Elektromanyetik dalga denklemi, elektromanyetik dalgaların bir ortam boyunca ya da bir vakum ortamı içerisinde yayılmasını açıklayan, ikinci dereceden bir kısmi diferansiyel denklemdir. Denklemin, ya elektrik alanı E ya da manyetik alan B cinsinden yazılan homojen formu şöyledir:

Kuantum mekaniği madde ve atomların ve atom içindeki parçacıklar ölçeğinde enerji ile etkileşimlerinin davranışını açıklayan bilimsel ilkeler organıdır: Bu makaleye teknik olmayan konuların tanıtımında ulaşabilirsiniz.

<span class="mw-page-title-main">Dalga (fizik)</span> uzayda ve maddeden geçen salınım

Dalga, bir fizik terimi olarak uzayda ve maddede yayılan ve enerjinin taşınmasına yol açan titreşime denir. Dalga hareketi, orta parçaların yer değişimi sıklıkla olmadan, yani çok az ya da hiç kütle taşınımı olmadan, enerjiyi bir yerden başka bir yere taşır. Dalgalar sabit konumlarda oluşan titreşimlerden oluşurlar ve zamanla nasıl ilerlediğini gösteren bir dalga denklemi ile tanımlanırlar. Bu denklemin matematiksel tanımı dalga çeşidine göre farklılık gösterir.

Modern kuantum (nicem) mekaniğinden önce gelen eski kuantum (nicem) kuramı, 1900 ile 1925 yılları arasında elde edilen sonuçların birikimidir. Bu kuramın, klasik mekaniğin ilk doğrulamaları olduğunu günümüzde anladığımız bu kuram, ilk zamanlar tamamlanmış veya istikrarlı değildi. Bohr modeli çalışmaların odak noktasıydı. Eski kuantum döneminde, Arnold Sommerfield, uzay nicemlenimi olarak anılan açısal momentumun (devinimin) z-bileşkesinde nicemlenim yaparak önemli katkılarda bulunmuştur. Bu katkı, electron yörüngelerinin dairesel yerine eliptik olduğunu ortaya çıkarmıştır ve kuantum çakışıklık kavramını ortaya atmıştır. Bu kuram, electron dönüsü hariç Zeeman etkisini açıklamaktadır.

Yunan harfleri; matematikte, bilimde ve mühendislikte ayrıca sabitler ve özel fonksiyonlar için sembollerle matematiksel notasyonun yapıldığı her yerde, özellikle belirli nicelikleri temsil eden değişkenler için kullanılır. Bu bağlamda, büyük ve küçük harfler farklı ve alakasız şeyleri simgelerler. Latin harfi biçimindeki Yunan harfleri genellikle kullanılmazlar: büyük A, B, E, H, I, K, M, N, O, P, T, X, Y, Z gibi. "i, o ve u" Latin harflerine yakından benzediklerinden, küçük ι (iota), ο (omikron) ve υ (ipsilon) nadiren kullanılır. Bazen Yunan harflerinin değişik fontları matematikte bambaşka semboller için kullanılır, özellikle de φ (fi) ve π (pi).

Kuantum mekaniğinin tarihi modern fizik tarihinin önemli bir parçasıdır. Kuantum kimyası tarihi ile iç içe olan kuantum mekaniği tarihi özünde birkaç farklı bilimsel keşif ile başlar; 1838’de Michael Faraday tarafından elektron demetlerinin keşfi, Gustav Kirchhoff tarafından 1859-60 kışı siyah cisim ışıması problemi beyanı, Ludwig Boltzmann’ın 1877 yılındaki fiziksel bir sistemin enerji seviyelerinin ayrıklardan olabileceği önerisi, 1887 yılında Heinrich Hertz’in fotoelektrik etkiyi keşfetmesi ve Max Planck’ın 1900 yılında ileri sürdüğü, herhangi bir enerji yayan atomik sisteminin teorik olarak birkaç farklı “enerji elementi” ε (epsilon) ne bölünebilmesi, bu enerji elementlerinden her birinin frekansına ν orantılı olması ve ayrı ayrı enerji üretebilmesi hipotezi, aşağıdaki formülle gösterilmiştir;

<span class="mw-page-title-main">Süperpozisyon prensibi (fizik)</span> Bir parçacık veya sistemin belli bir zamanda birden fazla durumda olabilmesi.

Fizikte ve sistem teorisinde, süperpozisyon prensibi, tüm lineer sistemler için bir veya daha fazla uyarılar tarafından oluşan net tepki olarak belirtilen süper pozisyon özelliği olarak da bilinir. Kuantum mekaniğinde iki dolanık parçanın durumuna da süperpoziyon denilir. Bu uyarılar her bir uyarıcı tarafından tek tek meydana gelen uyarıların toplamıdır. Eğer giriş A, X tepkisini üretirse ve giriş B, Y tepkisini üretirse, sonuç olarak giriş (A+B), (X+Y) tepkisini üretir. Homojenlik ve eklenebilirlik özellikleri birlikte süperpozisyon prensibi olarak adlandırılır. Bir lineer fonksiyon süperpozisyon prensibini sağlayanlardan biridir ve şöyle tanımlanır:

 Eklenebilirlik
  Homojenlik
skaler a için.

Kuantum tüneli, parçacığın bariyer boyunca olan kuantum mekaniğini ifade eder. Bu, Güneş gibi yıldızlar dizisinde meydana gelen nükleer birleşmeler gibi birçok fiziksel olayda önemli bir rol oynar. Tünel diyotu, kuantum bilgisayarı ve taramalı tünelleme mikroskobu gibi modern araçlarda önemli uygulamaları vardır. Fiziksel olay olarak etkisi ve kabul görülürlüğü 20. yüzyılın başlarında ve ortalarına doğru geldiği tahmin ediliyor.

Hesaplamalı elektromanyetik, hesaplamalı elektrodinamik veya elektromanyetik modelleme elektromanyetik alan ile fiziksel nesnelerin ve çevrenin etkileşimini modelleme işlemidir.

Matematik ve fizikte bir topolojik çözüm veya topolojik kusur, kısmi diferansiyel eşitliklerinin bir sisteminin veya kuantum alan teorisinin boşluk çözümünden homotopik olarak farklı olan bir çözümüdür; var olduğu ispatlanabilir çünkü sınır şartları homotopik olarak farklı çözümlerin varlığını gerektirir. Tipik olarak bu diferansiyel eşitliklerde muhafaza edilen önemsiz olmayan homotopi gruplarının belirtildiği sınır şartları altında oluşur; diferansiyel eşitliklere çözümler topolojik fark olur ve homotopi sınıflarına göre sınıflandırılırlar. Topolojik kusurlar yalnızca küçük karışıklıklar karşısına kararlı değildir, ancak kesin olarak çürütemez veya geri alamaz çünkü onları tekdüze ya da “önemsiz” bir çözüme yönelik olarak haritalandıracak sürekli dönüşüm yoktur.

<span class="mw-page-title-main">Manyetik tek kutup</span>

Manyetik monopol, parçacık fiziğinde yalıtılmış tek bir manyetik kutbu olan kuramsal bir temel parçacıktır. Daha teknik terimlerle açıklanacak olursa, bir manyetik monopol net manyetik yükü olan bir parçacıktır. Bu teori köklerini manyetik monopollerin varlığını öngören parçacık teorileri, özellikle büyük birleşim ve süper sicim teorilerinden alır. Çubuk şeklindeki mıknatısların manyetik alanı ve elektromanyetikler manyetik monopollerden kaynaklanmazlar. Manyetik monopollerin varlığını kanıtlayan herhangi bir deneysel veri yoktur. Bazı yoğun madde sistemleri efektif manyetik monopol, quasi parçacığını veya matematiksel olarak manyetik monopollerle benzeşen bazı fenomenleri barındırır.

Hesaplamalı kimya, kimya problemlerini çözmeye yardımcı olmak için bilgisayar simülasyonunu kullanan bir kimya dalıdır. Moleküllerin, katıların yapı ve özelliklerini hesaplamak için verimli bilgisayar programlarına dahil edilmiş teorik kimya yöntemlerini kullanır. Bu yöntemlerin kullanılmasının nedeni, hidrojen moleküler iyonu ile ilgili nispeten yeni sonuçlar dışında, kuantum çok-gövdeli(many-body) problemlerin analitik olarak çözülemez oluşudur. Hesaplama sonuçları normal olarak kimyasal deneylerle elde edilen bilgileri tamamlarken, bazı durumlarda gözlemlenmeyen kimyasal olayları da tahmin edebilmektedir. Yeni ilaç ve materyallerin tasarımında yaygın olarak kullanılmaktadır.

<span class="mw-page-title-main">Doğrusal olmayan Schrödinger denklemi</span> denklem

Doğrusal olmayan Schrödinger denklemi veya nonlineer Schrödinger denklemi (NLSE), Schrödinger denkleminin doğrusal olmayan bir versiyonudur. Denklem ağırlıklı olarak doğrusal olmayan optik fiberlerde ve düzlemsel dalga kılavuzlarında ışığın iletimini modellemek için kullanılır. Diğer kullanım alanları arasında Bose-Einstein yoğunlaşmaları, akışkanlar mekaniğindeki yüzey dalgaları, sıcak plazmalardaki Langmuir dalgaları ve solitonlar bulunmaktadır. Denklem, lineer versiyonunun aksine bir kuantum durumunun değişimini betimlemez.