İçeriğe atla

Sol el kuralı

Sol el kuralı kuvvet - manyetik alan - akım

Sol el kuralı bir manyetik alan içinde akım taşıyan bir iletken üzerindeki kuvvetin yönünü saptamak için geliştirilmiş bir hatırlatma kuralıdır. Kural ilk elektron tübünü geliştiren İngiliz elektrik mühendisi John Ambrose Fleming (1849-1945) tarafından ortaya konmuştur.

Lorentz yasası

Hollandalı fizikçi Hendrik Lorentz (1853-1928) tarafından geliştirilen yasaya göre

Burada,

F newton cinsinden kuvvet,
E volt/metre cinsinden elektrik alanı
B tesla cinsinden magnetik akı yoğunluğu
q coulomb cinsinden elektrik yükü
v metre/saniye cinsinden elektrik yük sürati

Bu denklem hem elektrik hem de manyetik alanın bir arada meydana getirdikleri kuvveti ifade eder. Bu kuvvete Lorentz kuvveti de denilir. Sadece manyetik alan varsa,

Buna göre, akı yoğunluğu içerisinde bu yoğunluk yönüne dik hareket eden elektrik yükü her iki yöne de dik üçüncü boyutta bir kuvvete yol açar. Elektrik yük elektrik akım şiddeti cinsinden de ifade edilebilir.

Burada ile elektrik akımı ve ile de iletken uzunluğu gösterilmniştir. Mayetik alan, yük akış süratinin yönü (akım yönü) ve kuvvet yönü birbirine dik üç yöndür.

Kartezyen koordinatta kural

Manyetik akım yoğunluğu, elektrik akımı ve Lorentz kuvveti yönleri arasındaki ilişki kartezyen koordinatlarda şu şekilde gösterilir.

Manyetik akı yoğunluğu x ekseni yönünde,
Elektrik akımı z ekseni yönünde ve
Lorentz kuvveti de y ekseni yönündedir.

El kuralı

Daha basit bir kural olarak, sol elin ilk üç parmağı birbirleri ile dik açı oluşturacak şekilde açılır. Sağ yönü gösteren işaret parmağı manyetik akı yoğunluğunu, içe dönük orta parmak akım yönünü ve yukarıyı gösteren başparmak ta iletken üzerindeki Lorentz kuvvetini ifade eder.

Ayrıca bakınız

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Maxwell denklemleri</span>

Maxwell denklemleri Lorentz kuvveti yasası ile birlikte klasik elektrodinamik, klasik optik ve elektrik devrelerine kaynak oluşturan bir dizi kısmi türevli (diferansiyel) denklemlerden oluşur. Bu alanlar modern elektrik ve haberleşme teknolojilerinin temelini oluşturmaktadır. Maxwell denklemleri elektrik ve manyetik alanların birbirileri, yükler ve akımlar tarafından nasıl değiştirildiği ve üretildiğini açıklamaktadır. Bu denklemler sonra İskoç fizikçi ve matematikçi olan ve 1861-1862 yıllarında bu denklemlerin ilk biçimini yayımlayan James Clerk Maxwell' in ismi ile adlandırılmıştır.

<span class="mw-page-title-main">Manyetik alan</span> elektrik yüklerinin bağıl hareketteki manyetik etkisini tanımlayan vektör alanı

Mıknatıssal veya manyetik alan, bir mıknatısın mıknatıssal özelliklerini gösterebildiği alandır. Mıknatısın çevresinde oluşan çizgilere de, mıknatısın o bölgede oluşturduğu manyetik alan çizgileri denir. Manyetik alan çizgilerinin yönü kuzeyden (N) güneye (S) doğrudur. Manyetik alan hareket eden elektrik yükleri tarafından, zamanla değişen elektrik alanlardan veya temel parçacıklar tarafından içsel olarak üretilir. Manyetik alan vektörel bir büyüklüktür. Yani herhangi bir noktada yönü ve şiddeti ile tanımlanır. Manyetik alan B harfiyle temsil edilir. SI birimi Sırp bilim insanı Nikola Tesla'nın soyadı Tesladır. Manyetik alan Lorentz kuvveti kullanılarak ölçüldüğü için birimi coulumb-metre/saniye başına Newtondur. Saniye başına coulomba bir amper dendiği için T=N(Am)-1 olarak da geçer. Tesla günlük olaylar için çok büyük bir birim olduğundan pratikte, gauss (G) kullanılmaktadır. 1 T=104 G

<span class="mw-page-title-main">Elektrik alanı</span>

Elektriksel alan, kıvıl alan, elektrik alan veya elektrik alanı, elektriksel yükü veya manyetik alanı çevreleyen uzayın bir özelliği olup, içerisinde bulunan yüklü nesnelere elektriksel güç aracılığı ile etki eder. Kavram fiziğe Michael Faraday tarafından kazandırılmıştır.

<span class="mw-page-title-main">Manyetizma</span> class of physical phenomena

Manyetizma, manyetik alan tarafından oluşturulan fiziksel bir olgudur. Elektrik akımı ya da temel bir parçacık herhangi bir manyetik alan yaratabilir. Bu manyetik alan aynı zamanda diğer akımları ve manyetik momentleri de etkiler. Manyetik alan her maddeyi belli bir ölçüde etkiler. Kalıcı mıknatıslar üzerindeki etkisi en çok bilinen bir durumdur. Kalıcı mıknatıslar ferromanyetizmadan dolayı kalıcı manyetik momente sahiptir. Ferromanyetizma kelimesinde yer alan “ferro” ön eki demir elementinin isminden türetilmiştir. Çünkü kalıcı mıknatıs ilk olarak “manyetit – Fe3O4” adı verilen demir elementinin doğal bir formu olarak gözlemlenmiştir. Çoğu madde kalıcı momente sahip değildir. Bazıları manyetik alan tarafından çekilirken (paramanyetizm); bazıları manyetik alan tarafından itilir (diyamanyetizm). Bazıları ise herhangi bir manyetik alana maruz kaldığında daha karmaşık durumlara sevk olur. Manyetik alan tarafından ihmal edilecek ölçüde etkilenen maddeler ise manyetik olmayan maddeler olarak bilinir. Bunlar bakır, alüminyum, gazlar ve plastiktir. Ayrıca, saf oksijen sıvı hale kadar soğutulduğunda manyetik özellikler gösterir.

<span class="mw-page-title-main">İş (fizik)</span>

Fizikte, bir kuvvet bir cisim üzerine etki ettiğinde ve kuvvetin uygulama yönünde konum değişikliği olduğunda iş yaptığı söylenir. Örneğin, bir valizi yerden kaldırdığınızda, valiz üzerine yapılan iş kaldırıldığı yükseklik süresince ağırlığını kaldırmak için aldığı kuvvettir.

Lorentz kuvveti, fizikte, özellikle elektromanyetizmada, elektromanyetik alanların noktasal yük üzerinde oluşturduğu elektrik ve manyetik kuvvetlerin bileşkesidir. Eğer q yük içeren bir parçacık bir elektriksel E ve B manyetik alanın var olduğu bir ortamda v hızında ilerliyor ise bir kuvvet hissedecektir. Oluşturulan herhangi bir kuvvet için, bir de reaktif kuvvet vardır. Manyetik alan için reaktif kuvvet anlamlı olmayabilir, fakat her durumda dikkate alınmalıdır.

<span class="mw-page-title-main">Ampère kanunu</span>

Klasik elektromanyetizmada Ampère yasası kapalı bir eğri üzerinden integrali alınmış manyetik alanla o eğri üzerindeki elektrik akımı arasındaki ilişkiyi açıklayan yasadır. James Clerk Maxwell yasayı hidrodinamik olarak 1861 tarihli Fizikte kuvvet çizgileri üzerine makalesinde tekrar kanıtlar. Yasanın matematiksel ifadesi şu anda klasik elektromanyetizmayı oluşturan dört temel Maxwell denkleminden biridir.

Akım yoğunluğu elektrik devresinde yoğunluğun bir ölçüsüdür. Vektör olarak tanımlanır ve elektrik akımının kesit alana oranıdır. SI'de akım yoğunluğu amper/metrekare veya coulomb/saniye/metrekare cinsinden ifade edilebilir.

<span class="mw-page-title-main">Hall etkisi</span> Bir elektrik iletkeni boyunca voltaj farkı üretimi

Manyetik alan içerisinde bulunan ve üzerinden akım geçen bir iletken boyunca gerilim oluşması olayına Hall etkisi denilmektedir. 1879'da Dr. Edwin Hall tarafından keşfedilmiştir. Gerilimin doğrultusu iletkenden geçen akımın ve manyetik alanın yönüne diktir.

Boşluğun empedansı elektromanyetikte başta anten hesapları olmak üzere çeşitli hesaplarda kullanılan bir sabittir. MKS sisteminde birimi ohm dur. (Ω).Tanımı;

<span class="mw-page-title-main">Elektromanyetik alan</span>

Elektromanyetik alan, Elektrik alanı'ndan ve Manyetik alan'dan meydana gelir.

Φ harfiyle gösterilen Manyetik akı, toplam manyetizmanın ölçüsüdür ve bu yönüyle elektrik yükün manyetik karşılığıdır. Manyetik akı yoğunluğu ise B harfiyle gösterilir ve birim kesit alandan geçen manyetik akı miktarının ölçüsüdür.

<span class="mw-page-title-main">Klasik elektromanyetizma</span>

Klasik elektromanyetizm, klasik elektromıknatıslık ya da klasik elektrodinamik teorik fiziğin elektrik akımı ve elektriksel yükler arasındaki kuvvetlerin sonuçlarını inceleyen dalıdır. kuantum mekaniksel etkilerin ihmal edilebilir derecede küçük olmasını sağlayacak kadar büyük ölçütlü sistemler için elektromanyetik fenomenlerin mükemmel bir açıklamasını sunar.

<span class="mw-page-title-main">Yer değiştirme akımı</span>

Elektromanyetizmada yer değiştirme akımı elektrik yer değiştirme alanının değişim oranıyla tanımlanan bir niceliktir. Yer değiştirme akımının birimi akım yoğunluğu cinsinden ifade edilir. Yer değiştirme akımı gerçek akımlar gibi manyetik alan üretir. Yer değiştirme akımı hareketli yüklerin yarattığı bir elektrik akımı değil; zamana bağlı olarak değişim gösteren elektrik alanıdır. Maddelerde, atomun içerisinde bulunan yüklerin küçük hareketlerinin de buna bir katkısı vardır ki buna dielektrik polarizasyon denir.

<span class="mw-page-title-main">Hareket eden mıknatıs ve iletken problemi</span> düşünce deneyi

Hareketli mıknatıs ve iletken problemi 19. yüzyılda ortaya çıkan, klasik elektromanyetizma ve özel görelilik kesişimi ile ilgili ünlü bir düşünce deneyidir. Mıknatısa göre sabit hız (v) ile hareket eden iletkendeki akım, mıknatısın ve iletkenin referans sistemlerinde hesaplanır. "Sadece "göreli" hareket gözlemlenebilir, diğerlerinin mutlak bir standardı yoktur." diye belirten temel görelilik ilkesi doğrultusunda, deneydeki gözlemlenebilir miktar olan akım, her durumda aynıdır. Ancak, Maxwell denklemlerine göre, iletkendeki yük, mıknatıs referans sisteminde "manyetik kuvvete" ve iletken referans sisteminde "elektrik kuvvetine" maruz kalır. Aynı olgu, gözlemcinin referans sistemine bağlı olarak iki farklı tanımları var gibi görünebilir.

<span class="mw-page-title-main">Elektrik akısı</span> elektrik alanının akısı

Elektrik akısı, elektrik alanının akısıdır. Elektrik akısı, bir yüzeyden geçen elektrik alan çizgilerinin sayısıyla doğru orantılıdır. Çok küçük bir dA alanındaki elektrik akısı şu şekilde hesaplanır:

<span class="mw-page-title-main">Kütleçekimsel elektromanyetizma</span>

Kütleçekimsel Elektromanyetizm, kısaltılmışı KEM, elektromanyetizm ve göreli kütleçekimi arasındaki eşitliklerin benzeşiklerinden oluşan bir settir; Özellikle: Maxwell'in alan eşitliği ve yakınsaması ve bazı durumlarda Einstein'ın genel göreliliğindeki alan eşitliklerinden bulunabilir. Kütleçekimsel manyetizm genelde özellikle kütleçekiminin kinetik etkilerini belirtmek için kullanılır, hareketli elektrik yükünün manyetik etkilerinin benzeşiğidir. KEM, yalıtılmış sistemlerden uzakta olduğunda ve yavaş hareket eden deney parçacıklarında daha geçerli ve doğrudur. 1893'te ilk kez genel görelilikten önce, Oliver Heaviside tarafından yayınlandığından beri benzeşiğinde ve eşitliklerinde çok az değişiklik olmuştur.

Elektromanyetik indüksiyon, değişen bir alana maruz kalmış bir iletkenin üzerindeki potansiyel fark (voltaj) üretimidir.

Şablon:Yj:bekletmeli sil

Pens ampermetre elektrik devrelerinde kullanılan bir ölçü aletidir. Alternatif akım ölçmekte kullanılır. Ancak klasik ampermetrelerden önemli bir farkı vardır. Ampermetreler devreye seri girerler. Ölçü yapmak için devreyi açıp ampermetreyi devreye seri olarak bağlamak gerekir. Bazı durumlarda bu çok güç bir işlem olur. Pens ampermetre farklı bir ilke ile çalıştığından devreye seri olarak girmez. Hatta devre elemanlarına temas bile etmez. Bu yönüyle pens ampermetre özellikle yüksek akım taşıyan devrelerde tercih edilen bir ölçü aletidir.