İçeriğe atla

Skellam dağılımı

Skellam
Olasılık kütle fonksiyonu
Skellam dağılımının olasılık kütle fonksiyonu için örnekler.
Skellam dağılımının olasılık kütle fonksiyonu için örnekler.

Yatay eksen k endeksidir. Noktaları bağlayan doğru parçaları görüş kolaylığı içindir, süreklilik ifade etmez.)

Yığmalı dağılım fonksiyonu
Parametreler
Destek
Olasılık kütle fonksiyonu (OYF)
Birikimli dağılım fonksiyonu (YDF)
Ortalama
MedyanN/A
Mod
Varyans
Çarpıklık
Fazladan basıklık
Entropi
Moment üreten fonksiyon (mf)
Karakteristik fonksiyon

Olasılık kuramı ve istatistik bilim dallarında Skellam dağılımı bir ayrık olasılık dağılım tipidir. Skellam dağılımı iki tane (aralarında korelasyon bulunabilen ve) beklenen değerleri ve olan Poisson dağılımı gösteren rassal değişken ve arasında bulunan fark olan nin gösterdiği olasılık dağılımdır.

Kullanış alanları çok farklılık göstermektedir; beyzbol, buz hokeyi ve futbol gibi sporlarda ABD'de çok popüler olan yayılmış bahis (spread betting) yöntemini tanımlamak ve fizikte iki imajin basit foton gürültüsünü (photon noise) açıklamak için kullanılmıştır.

Karaketeristikler

Bu kısımda geliştirilen karakteristikler iki değişkenin arasındaki korelasyonun etkilerini ele almayacaktır. Aralarında korelasyon bulunan iki değişken farkının da analize katılması ile ortaya çıkan sonuçlar için bakın[1] .[2]

Önce bir Poisson dağılımı için olasılık kütle fonksiyonunun şu olduğu hatırlansın:

Skellam olasılık kütle fonksiyonu iki Poisson dağılım arasındaki çapraz korelasyon olur (Skellam, 1946):[3]

Burada I k(z) birinci şekilde değiştirilmiş Bessel fonksiyonu olur. Yukarıdaki formüller için eğer faktöriyel negatif değer taşımaktaysa o değerin 0 olacağı kabul edilmiştir. Bir özel hal olan için bakin:[4]

Eğer değerler küçükse, Bessel fonksiyonu için limit değerleri kullanılarak, Poisson dağılımını için ozel bir hal olarak Skellam dağılımı yerine kullanabiliriz.

Özellikler

Skellem dağılımı için olasılık kütle dağılımı normalize edilerek şöyle elde edilir:

Poisson dağılımı için olasılık üreten fonksiyon şöyle verilir:

Bunlar kullanılarak Skellam dağılımı için olasılık üreten fonksiyon ortaya çıkartılır:

Olasılık üreten fonksiyonu incelenince görülmektedir ki herhangi bir sayıda bağımsız Skellam dağılımı gösteren değişkenlerin toplamları veya farklılıkları da tekrar Skellam dağılımı göstereceklerdir.

Bazı referanslara göre iki Skellam dağılımlı değişkenin herhangi bir doğrusal bileşiği de Skellem dağılımı gösterir. Fakat bu doğru değildir; çünkü herhangi çarpım sayısı dağılımın destek alanını değiştirecektir.

Skellam dağılımı için moment üreten fonksiyon şudur:

Bunlardan ham moment değerleri mk  bulmak için şu tanımlara bakılsın:

Bunlardan 3 ham moment mk değerleri şöyle çıkartılır:

Merkezsel momentler M k şunlardır:

Beklenen değer, varyans, çarpıklık katsayısı and basıklık katsayısı sırasıyla şöyle verilir::

Kümülant üreten fonksiyon şu şekilde verilmiştir:

ve bundan kümülant değerleri elde edilir:

Özel hal olan μ1 = μ2 için ayrıntılı sonuçlar M.Abromowitz et.al. referansındadır.[5]

Kaynakça

Kaynakça

  1. ^ Karlis, D. ve Ntzoufras, I. (2003). "Analysis of sports data using bivariate Poisson models." Journal of the Royal Statistical Society: Series D (The Statistician) 52 (3): 381–393. doi:10.1111/1467-9884.00366
  2. ^ [Karlis D. ve Ntzoufras I. (2006). "Bayesian analysis of the differences of count data" Statistics in Medicine C.25, say.1885-1905. [1] 12 Eylül 2009 tarihinde Wayback Machine sitesinde arşivlendi.
  3. ^ Skellam, J. G. 1946. The frequency distribution of the difference between two Poisson variates belonging to different populations. Journal of the Royal Statistical Society: Series A C.109 No.3 say.296. [2][]
  4. ^ [Irwin, J. O. (1937). "The frequency distribution of the difference between two independent variates following the same Poisson distribution." Journal of the Royal Statistical Society: Series A C.100 No.3 say. 415–416.
  5. ^ Abramowitz, M. and Stegun, I. A. (Eds.). 1972. Modified Bessel functions I and K. Sections 9.6–9.7 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, pp. 374–378. New York: Dover. p. 377 ]


İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Student'in t dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında t-dağılımı ya da Student'in t dağılımı genel olarak örneklem sayısı veya sayıları küçük ise ve anakütle normal dağılım gösterdiği varsayılırsa çıkartımsal istatistik uygulaması için çok kullanılan bir sürekli olasılık dağılımıdır. Çok popüler olarak tek bir anakütle ortalaması için güven aralığı veya hipotez sınaması ve iki anakütle ortalamasının arasındaki fark için güven aralığı veya hipotez sınamasında, yani çıkarımsal istatistik analizlerde, uygulama görmektedir.

Olasılık kuramı ve istatistik bilim dallarında varyans bir rassal değişken, bir olasılık dağılımı veya örneklem için istatistiksel yayılımın, mümkün bütün değerlerin beklenen değer veya ortalamadan uzaklıklarının karelerinin ortalaması şeklinde bulunan bir ölçüdür. Ortalama bir dağılımın merkezsel konum noktasını bulmaya çalışırken, varyans değerlerin ne ölçekte veya ne derecede yaygın olduklarını tanımlamayı hedef alır. Varyans için ölçülme birimi orijinal değişkenin biriminin karesidir. Varyansın karekökü standart sapma olarak adlandırılır; bunun ölçme birimi orijinal değişkenle aynı birimde olur ve bu nedenle daha kolayca yorumlanabilir.

<span class="mw-page-title-main">Normal dağılım</span> sürekli olasılık dağılım ailesi

Normal dağılım, aynı zamanda Gauss dağılımı veya Gauss tipi dağılım olarak isimlendirilen, birçok alanda pratik uygulaması olan, çok önemli bir sürekli olasılık dağılım ailesidir.

<span class="mw-page-title-main">Poisson dağılımı</span>

Poisson dağılımı, olasılık kuramı ve istatistik bilim kollarında bir ayrık olasılık dağılımı olup belli bir sabit zaman birim aralığında meydana gelme sayısının olasılığını ifade eder. Bu zaman aralığında ortalama olay meydana gelme sayısının bilindiği ve herhangi bir olayla onu hemen takip eden olay arasındaki zaman farkının, önceki zaman farklarından bağımsız oluştuğu kabul edilir.

<span class="mw-page-title-main">Geometrik dağılım</span>

Olasılık kuramı ve istatistik bilim dallarında geometrik dağılım şu iki şekilde ifade edilebilen ayrık olasılık dağılımıdır:

<span class="mw-page-title-main">Zeta dağılımı</span>

Olasılık kuramı ve istatistik bilim kollarında, zeta dağılımı bir ayrık olasılık dağılımıdır. Eğer X s parametresi ile zeta dağılımı gösteren bir bir rassal değişken ise, Xin k tam sayısı değerini almasının olasılığı şu olasılık kütle fonksiyonu ile belirtilir:

<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

Olasılık kuramı ve istatistik bilim kollarında, çokdeğişirli normal dağılım veya çokdeğişirli Gauss-tipi dağılım, tek değişirli bir dağılım olan normal dağılımın çoklu değişirli hallere genelleştirilmesidir.

Olasılık kuramı ve istatistik bilim dallarında bir rassal değişken X için olasılık yoğunluk fonksiyonu bir reel sayılı sürekli fonksiyonu olup f ile ifade edilir ve şu özellikleri olması gereklidir:

Olasılık kuramı ve istatistik bilim dallarında, bir rassal değişken X için, eğer beklenen değer var ise, moment üreten fonksiyon şöyle tanımlanır:

Olasılık kuramı içinde herhangi bir rassal değişken için karakteristik fonksiyon, bu değişkenin olasılık dağılımını tüm olarak tanımlar. Herhangi bir rassal değişken X için, gerçel doğru üzerinde, bu fonksiyonu tanımlayan formül şöyle yazılır:

<span class="mw-page-title-main">Büyük sayılar yasası</span>

Büyük Sayılar Kanunu ya da Büyük Sayılar Yasası, bir rassal değişkenin uzun vadeli kararlılığını tanımlayan bir olasılık teoremidir. Sonlu bir beklenen değere sahip birbirinden bağımsız ve eşit dağılıma sahip bir rassal değişkenler örneklemi verildiğinde, bu gözlemlerin ortalaması sonuçta bu beklenen değere yakınsayacak ve bu değere yakın bir seyir izleyecektir.

<span class="mw-page-title-main">Pareto dağılımı</span>

Pareto dağılımı, olasılık kuramı ve istatistik bilim dallarında birçok pratik uygulaması bulunan ve "küçük" bir nesnenin bir "büyük" nesneye dağılımında kararlılık elde edildiği hallerde kullanılan bir sürekli olasılık dağılımı veya bir güç kuramıdır. İlk olarak bir İtalyan iktisatçısı olan Vilfredo Pareto tarafından ekonomilerde bireylerin servet dağılımını göstermek için kullanılmıştır. İktisat bilim dalı dışında bu dağılım Bradford dağılımı adı altında da bilinmektedir.

Olasılık kuramı ve istatistik bilimsel dallarında bir reel-değerli rassal değişken için k-ıncı ortalama etrafındaki moment, E beklenen değer operatörü olursa

μk := E[(X - E[X])k]

Olasılık kuramı bilim dalında matematiksel beklenti veya beklenen değer veya ortalama birçok defa tekrarlanan ve her tekrarda mümkün tüm olasılıklarını değiştirmeyen rastgele deneyler sonuçlarından beklenen ortalama değeri temsil eder. Bir ayrık rassal değişkennin alabileceği bütün sonuç değerlerin olasılıklarıyla çarpılması ve bu işlemin bütün değerler üzerinden toplanmasıyla elde edilen değerdir. Bir sürekli rassal değişken için rassal değişken ile olasılık yoğunluk fonksiyonunun çarpımının aralığı belirsiz integralidir. Fakat dikkat edilmelidir ki bu değerin genel pratik anlamla rasyonel olarak beklenmesi pek uygun olmayabilir, çünkü matematiksel beklentiin olasılığı çok düşük belki sıfıra çok yakın olabilir ve hatta pratikte matematiksel beklenti bulunmaz. Ağırlıklı ortalama olarak da düşünülebilir ki değerler ağırlık katsayıları verilen olasılık kütle fonksiyonu veya olasılık yoğunluk fonksiyonudur.

<span class="mw-page-title-main">Poligama fonksiyonu</span>

Matematik'te, poligama fonksiyonu' eşitliğin soludur ve türevin kuvvetine m konulduğunda eşitliğin sağ tarafındaki gama fonksiyonu'nun logaritma'sının (m + 1). türevi olarak tanımlanır.

Matematik'te, Hurwitz zeta fonksiyonu, adını Adolf Hurwitz'ten almıştır, çoğunlukla zeta fonksiyonu denir. Formel tanımı için kompleks değişken s 'in Re(s)>1 ve q 'nun Re(q)>0 yardımıyla

Kuantum mekaniği ve Kuantum alan kuramı içinde yayıcı belirli bir zamanda bir yerden başka bir yere seyahat etmek ya da belirli bir enerji ve momentum ile seyahat için bir parçacığın olasılık genliği verir. Yayıcılar Feynman diyagramları iç hatları üzerinde sanal parçacık'ların katkısını temsil etmek üzere kullanılmaktadır. Ayrıca partikül uygun dalga operatörünün tersi olarak görülebilir ve bu nedenle sıklıkla Green fonksiyonları olarak adlandırılır.

Möbius fonksiyonu , 1832 yılında Alman matematikçi August Ferdinand Möbius tarafından ortaya atılan çarpımsal bir fonksiyondur. Temel ve analitik sayılar teorisi'nde çoğunlukla kullanılan fonksiyon, genellikle Möbius inversiyon formülü'nün bir parçası olarak görülür. Gian-Carlo Rota'nın 1960'lı yıllardaki çalışmaları sonucunda ile gösterilen Möbius fonksiyonunun genellemeleri kombinatoriğe tanıtılmıştır.

<span class="mw-page-title-main">Bir olayın olma olasılığı</span>

Olasılık yoğunluk fonksiyonu, olasılık kuramı ve bir olayın olma olasılığı dallarında bir rassal değişken olan X için reel sayılı sürekli fonksiyondur.