İçeriğe atla

Skarn

Skarnlar veya taktitler, metasomatizma adı verilen bir süreçle oluşan sert, iri taneli metamorfik kayalardır. Skarnlar, kalk-silikat mineralleri olarak da adlandırılan kalsiyum-magnezyum-demir-manganez-alüminyum silikat mineralleri bakımından zengin olma eğilimindedir.[1][2][3][4] Bu mineraller, hidrotermal akışkanlar magmatik veya tortul kökenli bir protolit ile etkileşime girdiğinde meydana gelen değişimin bir sonucu olarak oluşur. Çoğu durumda, skarnlar, dolomit veya kireç taşından oluşan bir karbonat tabakasına giren faylar veya kayma bölgelerinde ve çevresinde bulunan granitik bir plütonun girmesiyle ilişkilidir. Skarnlar bölgesel veya kontakt metamorfizmasına göre oluşabilir ve bu nedenle nispeten yüksek sıcaklık ortamlarında oluşabilir.[1][2][3][4] Metasomatik süreçlerle ilişkili hidrotermal akışkanlar, magmatik, metamorfik, meteorik, denizel veya hatta bunların bir karışımından kaynaklanabilir.

Szklarska Poręba, Izerskie Dağları, Aşağı Silezya, Polonya yakınlarındaki Izerskie Garby'de kuvars madeninden "Stanisław" diyopside sahip Wollastonite skarn

[3] Ortaya çıkan skarn, hem hidrotermal akışkanın orijinal bileşimine hem de protolitin orijinal bileşimine büyük ölçüde bağlı olan çeşitli farklı minerallerden oluşabilir.[3]

Bir skarn, kar için çıkarılabilecek önemli miktarda cevher mineralizasyonuna sahipse, skarn yatağı olarak sınıflandırılabilir.[1][2][3]

Etimoloji

Skarn, İsveç'in Persberg madencilik bölgesindeki Paleoproterozoyik yaşlı kireç taşlarının yerini alan demir cevheri içeren sülfit yataklarıyla ilişkili bir tür silikat gang veya atık kayayı tanımlamak için kullanılan eski bir İsveç madencilik terimidir.[5]

Malzemeler

Petroloji

Skarnlar kalsiyum-demir-magnezyum-manganez-alüminyum silikat minerallerinden oluşur. Skarn yatakları, kalay, tungsten, manganez, bakır, altın, çinko, kurşun, nikel, molibden ve demir gibi metal kaynakları ekonomik olarak değerlidir.[4]

Bir Skarn, iki bitişik litolojik birim arasındaki metamorfizma sırasında çeşitli metasomatik süreçlerin bir sonucu olarak oluşur. Skarn, şist, granit ve bazalt gibi hemen hemen her litoloji tipinde oluşabilir, ancak skarnların çoğu kireç taşı veya dolomit içeren litolojide bulunur. Plütonların yakınında, faylar ve büyük kesme bölgeleri boyunca, sığ jeotermal sistemlerde ve deniz tabanının dibinde skarnlar bulmak yaygındır.[3] Skarn mineralojisi, protolit ile oldukça ilişkilidir.

Hidrotermal florit (mor, mavi ve açık yeşil) ile Skarn ve Szklarska Poręba, Izerskie Dağları, Aşağı Silezya, Polonya yakınlarındaki Izerskie Garby'deki kuvars madeni "Stanisław" dan diyopside sahip.

Skarn mineralleri esas olarak çok çeşitli kireç silikat ve ilgili minerallere sahip granatlar ve piroksenlerdir. Tipik skarn mineralleri arasında piroksen, granat, idokraz, volastonit, aktinolit, manyetit veya hematit, epidot ve skapolit bulunur. Skarnlar uyumsuz element bakımından zengin silisli sulu sıvılardan oluştuğundan, skarn ortamında turmalin, topaz, beril, korindon, florit, apatit, barit, strontianit, tantalit, anglesit ve diğerleri gibi çeşitli nadir mineral türleri bulunur.[6]

Sınıflandırma

Skarnlar, belirli kriterlere bağlı olarak alt gruplara ayrılabilir:

Bir skarn'ı sınıflandırmanın bir yolu, protolitine göredir. Protolit tortul kökenli ise, exoskarn, protolit magmatik ise endoskarn olarak adlandırılabilir.[2][3]

Skarnların baskın bileşimini ve sonuçta ortaya çıkan alterasyon topluluğunu gözlemleyerek protolit temelinde daha fazla sınıflandırma yapılabilir. Skarn, olivin, serpentin, flogopit, magnezyum klinopiroksen, ortopiroksen, spinel, pargasit ve humit grubundan mineraller içeriyorsa, dolomitik bir protolitin karakteristiğidir ve magnezyen skarn olarak sınıflandırılabilir. Kalsik skarn olarak adlandırılan diğer sınıf, bir kireç taşı protolitinin granat, klinopiroksen ve volastonit içeren baskın mineral toplulukları ile ikame ürünleridir.[2]

Anafazlar olarak granat veya piroksen içeren, ince taneli, demir içermeyen ve skarn benzeri görünümleri olan kayalara genellikle skarnoid terimi verilir. Skarnoid, bu nedenle, ince taneli hornfels ve kaba taneli skarnın ara aşamasıdır.[2][3]

Skarn yatakları tipik skarn gang minerallerine sahiptir, ancak aynı zamanda ekonomik öneme sahip olan bol miktarda cevher mineralleri içerir. Bu nedenle, Skarn yatakları, bakır (Cu) skarn yatağı veya molibden (Mo) skarn yatağı gibi baskın ekonomik unsurlarına göre sınıflandırılır.[1][2][4]

Fe (Cu, Ag, Au) skarn yatakları

Szklarska Poręba, Izerskie Dağları, Aşağı Silezya, Polonya yakınlarındaki Izerskie Garby'deki kuvars madeninden "Stanisław" dan stilbite (kahverengi) ile diyopside-klorit skarn.

Kalsik Fe skarnları için tektonik ortam, okyanus adası yayları olma eğilimindedir. Konakçı kayalar, intrüzyon kireçtaşıyla ilişkili siyenite gabro olma eğilimindedir. Magnezyum Fe skarnları için tektonik ortam, kıta kenarı olma eğilimindedir. Ev sahibi kayalar, intrüzyonlu dolomit ve dolomitik tortul kayaçlarla ilişkili granodiyorit ile granit olma eğilimindedir. Manyetit, bu tür skarn yataklarında ana cevherdir ve derecesi %40 ila %60 arasındadır. Kalkopirit, bornit ve pirit küçük cevherlerdir.[7][8]

Cu (Au, Ag, Mo, W) skarn yatakları

Cu yatakları için tektonik ortam, daha eski kıta kenarı karbonat katmanlarına giren Andean tipi plütonlar olma eğilimindedir. Konakçı kayaçlar kuvars diyorit ve granodiyorit olma eğilimindedir. Pirit, kalkopirit ve manyetit tipik olarak daha yüksek bollukta bulunur.[7][8]

Şekil 2. Bir granit plütonuyla ilişkili bir skarn yatağının evrim aşamaları: (A). İlk intrüzyon tortul kayaçların izokimyasal temas metamorfizmasına neden olur. (B). Çatının aşınması (durma) nedeniyle magmanın yükselmesi ile saldırı tamamlanır. Metamorfik yeniden kristalleşme ve faz değişiklikleri, saf olmayan litolojilerde ve akışkan sınırları boyunca farklı kalsiyum silikat mineralleri (reaksiyon skarnları ve skarnoidler) oluşturan, lokal bimetasomatizma ve sıvı sirkülasyonu ile protolitlerin bileşimlerini yansıtır. Metamorfizmanın, sistemin çatısındaki küçük granit kubbeye göre daha kapsamlı ve daha yüksek derinlikte olduğuna dikkat edin. (C). Ayrı sulu fazların kristalleşmesi ve salımı, sıvı kontrollü metasomatik skarnlara yol açar. Skarn genişlemesinin derinlemesine metamorfik halodan daha az olduğuna ve sistemin çatısındaki metamorfik halonun kapsamını yerel olarak aşan yüzeysel skarnın yanal uzantısına kıyasla baskın olarak dikey olarak yönlendirildiğine dikkat edin. (D). Plütonun soğuması ve daha soğuk ve daha oksijenli meteorik suların olası sirkülasyonu, metamorfik ve metasomatik birleşmelerde kalsiyum silikatlara retrograd bir değişikliğe neden olur. Retrograd atrasyonun yüzeyin yakınında daha kapsamlı olduğunu unutmayın. Son olarak, hidrotermal sıvıları yönlendirmede eklemler ve faylar gibi tektonik yapıların önemine dikkat edin (Da Meinert, 1992, yeniden çizilmiş)
Şekil 2. Bir granit plütonuyla ilişkili bir skarn yatağının evrim aşamaları: (A). İlk intrüzyon tortul kayaçların izokimyasal temas metamorfizmasına neden olur. (B). Çatının aşınması (durma) nedeniyle magmanın yükselmesi ile saldırı tamamlanır. Metamorfik yeniden kristalleşme ve faz değişiklikleri, saf olmayan litolojilerde ve akışkan sınırları boyunca farklı kalsiyum silikat mineralleri (reaksiyon skarnları ve skarnoidler) oluşturan, lokal bimetasomatizma ve sıvı sirkülasyonu ile protolitlerin bileşimlerini yansıtır. Metamorfizmanın, sistemin çatısındaki küçük granit kubbeye göre daha kapsamlı ve daha yüksek derinlikte olduğuna dikkat edin. (C). Ayrı sulu fazların kristalleşmesi ve salımı, sıvı kontrollü metasomatik skarnlara yol açar. Skarn genişlemesinin derinlemesine metamorfik halodan daha az olduğuna ve sistemin çatısındaki metamorfik halonun kapsamını yerel olarak aşan yüzeysel skarnın yanal uzantısına kıyasla baskın olarak dikey olarak yönlendirildiğine dikkat edin. (D). Plütonun soğuması ve daha soğuk ve daha oksijenli meteorik suların olası sirkülasyonu, metamorfik ve metasomatik birleşmelerde kalsiyum silikatlara retrograd bir değişikliğe neden olur. Retrograd atrasyonun yüzeyin yakınında daha kapsamlı olduğunu unutmayın. Son olarak, hidrotermal sıvıları yönlendirmede eklemler ve faylar gibi tektonik yapıların önemine dikkat edin (Da Meinert, 1992, yeniden çizilmiş)

Formasyon

Genellikle iki tür skarn vardır, eksoskarnlar ve endoskarnlar.

Eksoskarnlar daha yaygındır ve bir karbonat ünitesi ile temas eden müdahaleci bir cismin dışında oluşur. Yerleşimin azalan aşamalarında, izinsiz girişin kristalleşmesinden arta kalan sıvılar kütleden dışarı atıldığında oluşurlar. Bu sıvılar reaktif kayaçlarla, genellikle kireç taşı veya dolomit gibi karbonatlarla temas ettiğinde, sıvılar onlarla reaksiyona girerek alterasyona (infiltrasyon metasomatizmi) neden olur.[3]

Endoskarnlar, kırılma, soğutma derzleri ve stok işlerinin üretildiği müdahaleci gövde içinde oluşur ve bu da geçirgen bir alan ile sonuçlanır. Geçirgen alan, karbonat tabakasından malzeme içerebilir. İstila ile taşınan veya oluşturulan magmatik hidrotermal sıvılar karbonat malzemesi ile etkileşime girer ve endoskarn oluşturur. Endoskarnların nadir olduğu düşünülmektedir. Protolitin hem bileşimi hem de dokuları, ortaya çıkan skarn oluşumunda güçlü bir rol oynar.[3]

Skarn reaksiyonu, bitişik birimler arasında bileşenlerin küçük ölçekli (belki santimetre) metasomatik transferini içeren ince tabakalı tortul litolojik ünitelerde meydana gelen izokimyasal metamorfizmadan oluşur.[3][9]

Skarnoid, ince taneli ve demir açısından fakir bir kalk-silikat kayadır. Hornfels ve iri taneli skarn arasında bulunur.[10][11] Skarnoid, protolitin bileşimini yansıtma eğilimindedir.[3]

Büyük skarn yataklarının çoğu, hornfels, reaksiyon skarnları ve skarnoidleri oluşturan erken metamorfizmadan, nispeten daha iri taneli, cevher içeren skarnlar oluşturan geç metamorfizmaya bir geçiş yaşar. Magma intrüzyonu, tortul kayaçların bulunduğu bölgede temas metamorfizmasını tetikler ve sonuç olarak hornfels oluşturur. Hornfellerin yeniden kristalleşmesi ve faz değişimi, protolitin bileşimini yansıtır. Hornfel oluşumundan sonra, magmatik, metamorfik, denizel, meteorik ve hatta bunların bir karışımı ile ilişkili hidrotermal sıvıları içeren metasomatizm adı verilen bir süreç meydana gelir. Bu işleme izokimyasal metamorfizma denir ve saf olmayan litoloji birimlerinde, küçük ölçekli metasomatizmanın meydana geldiği sıvı sınırları boyunca (argillit, kireç taşı ve bantlı demir oluşumu) oluşan geniş bir yelpazede kalk-silikat minerallerinin üretilmesine neden olabilir.[1][2]

Değerli metalleri içermesi için ekonomik olarak önemli kabul edilen skarn yatakları, sıvının bileşiminin skarn ve cevher mineralojisini kontrol ettiği büyük ölçekli metasomatizmanın bir sonucudur. Nispeten daha kaba tanelidirler ve protolit veya çevresindeki kayaların bileşimini yansıtmazlar.[2][3]

Nadir görülen skarn türleri, siyah şeyller, grafit şeylleri, bantlı demir oluşumları bazen tuz veya evaporitler gibi sülfidik ya da karbonlu kayaçlarla temas halinde oluşur. Duvar kayalarının redoks oksidasyon potansiyeli nedeniyle buradaki sıvılar kimyasal iyon değişimi ile daha az reaksiyona girer.[3]

Ekonomik önemi

Skarn, çoğunlukla bakır, demir, molibden, tungsten, altın, kurşun, kalay ve çinko gibi çeşitli metallerin ana kaynağıdır. Manyetit mineralizasyonu en çok skarnlarda oluşur, diğerleri, özellikle sülfitler daha sonra ortaya çıkabilir. Bu tip yataklar, temaslı metasomatik, temaslı pnömatik veya pirometazomatik olarak adlandırılır.[12] Demir ve altın içeren skarnların, muhtemelen manto kökenli mafik veya ara girişler tarafından oluşturulduğuna inanılmaktadır. Bu türden bakır, kurşun, çinko ve tungsten yatakları I-tipindeki bazı granitoyid masif türlerine bağlanırken molibden ve kalay mineralizasyonu, tortu anateksisinin (S-tipi) neden olduğu magmanın etkisiyle oluşmuştur.

Dünyadaki mevduatlar ve oluşumlar

Skarnlar, çeşitli hammaddelerin önemli birikimlerini oluşturur. Geçmişte, uygun konumlarından dolayı Avrupa'da sıklıkla çıkarılmış olan Fe-skarnlar büyük önem taşıyordu. Bugün, bu yataklar, örneğin Rusya'da Urallarda (Magnitnaya Gora), ABD'de (Demir Pınarı, Demir Dağı) ve Romanya'da (Ocna de Fer) çıkarılmaktadır. Ayrıca, Tazmanya'daki King Island Madeni veya Kanada'daki MacTung yatağı gibi bu metalin dünyadaki rezervlerinin çoğunu oluşturan tungsten skarn yatakları da çok önemlidir. Ekonomik olarak önemsiz skarn oluşumu da dünyanın birçok yerinde bilinmektedir.

Çekya'da Fe-skarnlar (Malešov, Vlastějovice, Přísečnice, Měděnec) Ca-skarn (Žulová, Jáchymov) ve Mg-skarn (Třebíč yakınlarındaki Borovina) üzerinde hakimdir.

Cevher yatakları

Skarn yataklarını oluşturan başlıca baskın ekonomik metaller bakır, tungsten, demir, kalay, molibden, çinko - kurşun ve altındır.[1][2][3][4] Diğer küçük ekonomik mineraller arasında uranyum, gümüş, bor, flor ve nadir toprak elementleri bulunur.[3]

Başlıca ekonomik skarn yataklarının bazı örnekleri şunlardır: * (Not; bunlardan bazıları şu anda çıkarılmakta veya geçmişte çıkarılmıştır):

Ayrıca bakınız

  • Cevher oluşumu - Dünyanın kabuğunda çeşitli maden yataklarının nasıl oluştuğu.

Kaynakça

  1. ^ a b c d e f Einaudi, Marco T.; Burt, Donald M. (1 Temmuz 1982). "Introduction; terminology, classification, and composition of skarn deposits". Economic Geology (İngilizce). 77 (4): 745-754. doi:10.2113/gsecongeo.77.4.745. ISSN 1554-0774. 
  2. ^ a b c d e f g h i j Shcheglov, A. D. (1 Ocak 1991). "Tin deposits and the mantle". Global Tectonics and Metallogeny. 4 (1-2): 69-74. doi:10.1127/gtm/4/1991/69. ISSN 0163-3171. 
  3. ^ a b c d e f g h i j k l m n o p "The Geochemistry and Mineralogy of W-Sn In Skarns", W-Sn Skarn Deposits and Related Metamorphic Skarns and Granitoids, Elsevier, ss. 145-194, 1987, ISBN 978-0-444-42820-2, erişim tarihi: 21 Ekim 2020 
  4. ^ a b c d e du Bray, Edward A. (1995). "Preliminary compilation of descriptive geoenvironmental mineral deposit models". Open-File Report. doi:10.3133/ofr95831. ISSN 2331-1258. 
  5. ^ Romer, Rolf L. (1992). "Vesuvianite-new tool for the U-Pb dating of skarn ore deposits". Mineralogy and Petrology. 46 (4): 331-341. doi:10.1007/bf01173571. ISSN 0930-0708. 
  6. ^ "S. Farooq, Dept of Geology AMU". www.geol-amu.org. 11 Ekim 2007 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Ekim 2020. 
  7. ^ a b Nadoll, Patrick; Mauk, Jeffrey L.; Leveille, Richard A.; Koenig, Alan E. (23 Ağustos 2014). "Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States". Mineralium Deposita. 50 (4): 493-515. doi:10.1007/s00126-014-0539-y. ISSN 0026-4598. 
  8. ^ a b Soloviev, Serguei G.; Kryazhev, Sergey (Ocak 2017). "Geology, mineralization, and fluid inclusion characteristics of the Chorukh-Dairon W–Mo–Cu skarn deposit in the Middle Tien Shan, Northern Tajikistan". Ore Geology Reviews (İngilizce). 80: 79-102. doi:10.1016/j.oregeorev.2016.06.021. 30 Mart 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Ekim 2020. 
  9. ^ Zarayskiy, G. P.; Zharikov, V. A.; Stoyanovskaya, F. M.; Balashov, V. N. (Temmuz 1987). "THE EXPERIMENTAL STUDY OF BIMETASOMATIC SKARN FORMATION". International Geology Review. 29 (7): 761-858. doi:10.1080/00206818709466181. ISSN 0020-6814. 
  10. ^ "ОТ ГЛАВНОГО РЕДАКТОРА". Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. (4). 18 Temmuz 2015. doi:10.15356/0373-2444-2015-4. ISSN 0373-2444. 
  11. ^ Zharikov, V. A. (Haziran 1970). "Skarns (Part II)". International Geology Review. 12 (6): 619-647. doi:10.1080/00206817009475270. ISSN 0020-6814. 
  12. ^ Teschner, D. (Nisan 1986). "Čepelák, J. (a kolektiv): Diptera Slovenska I (Nematocera, Brachycera - Orthorrhapha). VEDA, vydavatel'stvo Slovenskej akadémie vied, 288 Seiten, Bratislava 1984, Kčs 30". Deutsche Entomologische Zeitschrift. 33 (1-2): 54-54. doi:10.1002/mmnd.4800330114. ISSN 1435-1951. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kumtaşı</span>

Kumtaşı, kum tanelerinin doğal bir çimento maddesi yardımıyla yapışması sonucu oluşan fiziksel tortul bir taştır. Bir kumun doğal çimentolaşmasından doğan ve kuvars taneleri oranı yüksek olan tortul kayaç; kumtaşı inşaatta, yol ve kaldırımlara taş döşemede, çok ince olanları da bileme taşı olarak kullanılır. Kalkerli kumtaşı ise içinde kireçtaşı taneleri bulunan yeşilimsi bir tür kumtaşı.

<span class="mw-page-title-main">Mineral</span> inorganik kristalleşmiş katı madde

Mineral, doğal şekilde oluşan, homojen, belirli kimyasal bileşime sahip inorganik kristalleşmiş katı bir maddedir. Buna göre minerallerin özellikleri şöyledir; doğal olarak oluşur, herhangi bir parçası bütününün özelliklerini taşır, belirli bir kimyasal formülü vardır, katı hâlde olup nadiren sıvıdır ve inorganiktir.

<span class="mw-page-title-main">Kayaç</span> doğal olarak oluşan mineral agregası

Kayaç, çeşitli minerallerin veya mineral ve taş parçacıklarının bir araya gelmesinden ya da bir mineralin çok miktarda birikmesinden meydana gelen katı birikintilerdir. Kayaç terimi eski Türkçede sahre, yeni Türkçede külte ve yabancı dillerdeki rock, roche, gestein sözcükleri karşılığı kullanılmaktadır.

<span class="mw-page-title-main">Piroksen</span>

Piroksen, mantonun önemli bileşenlerinden biri olduğu sanılan, magmatik ve metamorfik taşlarda sıkça rastlanan karmaşık bir inosilikat mineral grubudur.

<span class="mw-page-title-main">Bazalt</span>

Bazalt, volkanik kaya kütlelerinden biri. Siyah renkte ve kesif yığınlar halindedir. Doğada kütle, damar ve akıntı halinde bulunur. Başlıca özelliklerinden birisi, altıgen prizmalar biçiminde, büyük sütunlar meydana getirmesidir. Bu sütunlar, mağma akıntılarının soğuyup büzülmesinden ileri gelmiştir. Sert ve dayanıklı bir taş olduğundan kaldırım, yapı taş, demiryolu, köprü malzemesi olarak kullanılır. Yeryüzünde çok bol olan bazalt, bazı memleketlerde, binlerce kilometrekarelik yerleri örter. Birleşik Krallık'ın kuzeyi, İrlanda, Almanya ve Amerika Birleşik Devletleri'nde büyük Hindistan'da Dekkan bölgesindeki bazalt yığınları 300.000 kilometrekarelik geniş bir bölgeyi kaplar.

<span class="mw-page-title-main">Başkalaşım kayaçları</span> Isı ve basınca maruz kalan kaya

Başkalaşım kayaçları ya da metamorfik kayaçlar, magmatik ve tortul kayaçların çeşitli etkilerle değişime uğraması sonucu oluşurlar. Mermer, başkalaşım kayaçlarına bir örnek olarak verilebilir. Gnays, elmas ve şist de bu kayaçlara verilebilecek diğer örneklerdir.

<span class="mw-page-title-main">Karbonatit</span>

Karbonatit, kalsit ve diğer karbonat minerallerince zengin, manto kökenli olduğu kabul edilen nadir bir kayaç. Karbonatitler, sokulum yapmış kütleler, dayklar, konik örtüler ve nadiren de lavlar ve tefra şeklinde alkalilerce zengin kor kayaçlarla ilişkili olarak bulunur.

<span class="mw-page-title-main">Magmatik kayaçlar</span> Magmanın yeryüzüne çıkarken soğumasıyla meydana gelen kayaçlardır.

Magmatik kayaçlar, magmanın yükselerek yer kabuğunun içerisine girip veya yeryüzüne ulaşıp soğuyarak katılaşması sonucu oluşan kayaç türüdür. Üç ana kaya türünden biridir, diğerleri tortul ve metamorfiktir. Magmatik kaya magma veya lavın soğutulması ve katılaşmasıyla oluşur. Magmatik kayaçlar çok çeşitli jeolojik ortamlarda meydana gelir: kalkanlar, platformlar, orojenler, havzalar, büyük magmatik bölgeler, genişletilmiş kabuk ve okyanus kabuğu. (Resim1) Magmatik kayaçlar temel olarak silikat minerallerinden oluşmuşlardır. Magmanın bileşimi temel bazı elementlerin dağılımını yansıtsa da oranları değişmekte ve bu da belli başlı magma tiplerinin oluşmasına neden olur.

<span class="mw-page-title-main">Gnays</span>

Gnays, yaygın bir başkalaşım kayacı türüdür. Gnays, magmatik veya tortul kayaçlardan oluşan oluşumlara etki eden yüksek sıcaklık ve yüksek basınçlı başkalaşım süreçleriyle oluşur. Gnays, şistten daha yüksek sıcaklık ve basınçlarda oluşur. Gnays hemen hemen her zaman, belirgin bir bölünme olmaksızın, değişen koyu ve açık renkli bantlarla karakterize edilen bantlı bir doku gösterir.

Ortorombik kristal sistemi kristal kafes yapılarından biridir. Bu sistemde a, b ve c eksenleri farklı boylarda, bunlar arasındaki açılar da 90o'e eşittir a≠b≠c ve α=β=γ=90° olmalıdır.

<span class="mw-page-title-main">Şist</span>

Şist orta dereceden bir tür başkalaşım kayacı'dır. Şist kelimesi Yunanca bir sözcük olan σχίζειν (şizin)'den gelmektedir. Kelimenin anlamı "bölmek"tir. Şist'in anlamının Yunanca "bölmek" olmasının sebebi büyük olasılıkla, şistin alüminyum levhalar halinde kolayca ayrılabilir yapıda olmasından kaynaklanıyordur. Şistler genellikle orta veya büyük, düz, tabaka benzeri tanelere sahiptir. %50'den fazla şist, uzun mineraller içermesiyle tanımlanır.

<span class="mw-page-title-main">Amfibolit</span>

Amfibolit, esas olarak hornblend ve plajyoklaz minerallerinden oluşan bir kayaçtır. Bu minerallerin yanı sıra içlerinde epidot, ojit, biotit ve almandit mineralleri de yer alabilir. Yeşil, gri ve siyah renkli olan amfibolitler ferromagnezyumlu katılaşım kayaçları ile saf olmayan kalkerlerin orta veya yüksek derecede metamorfizmaya uğramaları sonucu meydana gelmiştir.

<span class="mw-page-title-main">Riyolit</span>

Riyolit, silis içeriği çok yüksek olan ekstrüzyonla üretilmiş magmatik bir kayaçtır. Riyolit, kuvarstan oluşur ve az miktarda hornblende ve biyotit içerir. Sıkıştırılmış gazlar genellikle kayada vig üretirler. Genellikle kristaller, opal veya camsı maddeler içerirler. Riyolit, plütonik granit kayaya göre eşdeğer olarak düşünülebilir ve sonuç olarak, riyolitin yüzeyleri de granite benzeyebilir.granitle kimyasal yapı yönünden aynı olan, serbest silisçe zengin, içinde mikrolitler bulunan kayaçtır. Riyolit, granitle aynı kimyasal yapıda olan camsı bir kütledir. İçinde mikrolitler olan kayaçtır.Mikrolit: Mezolitik Çağ'da insanların küçük boyuttaki aletlerinde kullandığı küçük taşlarla yapılmış aletlere minitaş anlamında mikrolit ismi verilmiştir. Eş anlamlısı Yüksek silika içeriği ve düşük demir ve magnezyum içeriği nedeniyle, riyolitik magmalar oldukça viskoz lavlar oluşturur. Granitin yüzey eşdeğeridir ve granit gibi başlıca açık renkli silikat minerallerinden oluşur. Bu mineralojik bileşim riyolitlerin boz ile pembe arasında, bazen de açık gri renkli olmasını sağlar. Riyolit ince taneli bir kayaçtır ve sıklıkla cam parçaları ve gaz boşlukları kapsar. Bu özellikler onun yüzey koşullarında hızlı soğuma ile oluştuklarına işaret etmektedir. Eğer riyolitler fenokristal içeriyorsa bunlar küçük boyutludur, kuvars veya potasyum feldispatlardan oluşur. Kabukta çok yaygın ve büyük magmatik gövdeler halinde bulunan granitlerin tersine riyolitler hem daha az yaygın hem de küçük hacimli kütleler halinde görülmektedir. Riyolit plütonik granit kaya ekstrüzyon eşdeğer olarak kabul edilebilir ve sonuç olarak, riyolit mostra granit bir benzerlik taşıyabilir. Yüksek silika içeriği ve düşük demir ve magnezyum içeriği nedeniyle, riyolitik magmalar oldukça viskoz lavlar oluşturur. Ayrıca breccias veya volkanik fişler ve pençeler olarak ortaya çıkar. Kristalleri büyütmek için çok hızlı soğuyan riyolitler, obsidyen olarak da adlandırılan doğal bir cam veya vitrophyre oluşturur. Daha yavaş soğutma, lavda mikroskobik kristaller oluşturur ve akış yaprakları, sferulitik, nodüler ve litofizal yapılar gibi dokularla sonuçlanır. Bazı riyolit oldukça veziküler pomza. Riyolitin birçok patlaması oldukça patlayıcıdır ve tortular serpinti tefra/tüf veya ıgnimbritlerden oluşabilir. Riyolit püskürmeleri, daha az felsik lavların püskürmelerine kıyasla nispeten nadirdir. 20.yüzyılın başından bu yana sadece üç riyolit patlaması kaydedildi: Papua Yeni Gine'deki St. Andrew Boğazı yanardağı, alaska'daki Novarupta yanardağı ve Güney Şili'deki Chaiten. Riyolit, karadan uzak adalarda bulunmuştur, ancak bu tür okyanus olayları nadirdir. Etimoloji ve tarih Riyolit Yunanca kelime ῤεῖν bir yenilikçilik, rheîn “akış” ve λίθος, líthos, “taş”dır. Kayanın bilimsel tanımı Baron Ferdinand von Richthofen tarafından 1860 yılında yapılmıştır. Mineral topluluğu genellikle kuvars, sanidin ve plajiyoklaz Bir riyolit başlıca kuvars ve feldispat oluşmaktadır. Kuvars içeriği muhtemelen Riyolitik eriyiğin kristalleşme ile meydana gelmeyecektir, sadece kaya takip eden zenginleştirme işlemlerinden ile % 50'den fazla bir kuvars paylarıyla, %20 ve %60 arasında değişmektedir. Kristal-fakir riyolitlerle için QAR ve kuvars-zengin tipleri, kısaltma QRR kısaltmasıdır. Kalan %40-80 ağırlıklı alkali feldspat %35-90,10 ve %65 plajiyoklaz ve tamamlayıcı arasındaki dar anlamda riyolit onlar için hesap feldspat oluşur. Daha fazla %65 plajiyoklaz riyodasit ile paylaşımın alkali riyolit, yani, fazla %90 alkali feldspat ile felsik volkanitler görülür. Buna ek olarak, bir riyolit küçük miktarlarda - genellikle en fazla %2, azami %15 - on mafik minerallerin. Riyodasitler tür hisselerin %20 fazla olabilir. Bu maddeler arasında sık sık biyotit oluşur, ancak ek olarak, aynı zamanda hornblendli veya ojit. Riyolit çok küçük miktarlarda gibi manyetit, hematit, kordiyerit, granat veya olivin gibi mineraller çoğunlukla hala içerirler. Kaldaklofsfjöll: Genellikle riyolit bir porfirik dokuya sahiptir. Bu çoğunlukla kuvars ve feldispat oluşmaktadır olan tek kristaller man fenokristalleri denilen dağınık büyük kristaller, sadece bir mikroskop altında görülebilen ve gömülü bir yoğun, ince taneli matrisi oluşur anlamına gelir ve boyutu birkaç santimetre birkaç milimetre. Ancak, Afirik veya felsitischen riyolitlerden sonra yani tamamen ince taneli herhangi Einsprengling olmadan riyolit, manspricht vardır. Kısmi de riyolit kayalar kolayca tanınabilir akış dokular gösterir. Genç jeolojik zamanda riyolit gaz kabarcıkları vardı. Bu boşluk kabarcıkları genellikle orada zaman içinde çökeldi. Bu boşluklar minerallerle dolduruldu. Obsidyenle aynı kimyasal bileşime sahip riyolit volkanik bir camdır.

Düzlemsel veya çizgisel paralelliği çok iyi gelişmiş, oldukça ileri derecede değişikliğe uğramış orta taneli bir kayaçtır. Bazen, özellikle mika grubu minerallerin çokluğunda kayaç yaprak yaprak ayrılır. Şist içindeki tek tek mineral taneleri, sıcaklık ve basınç sonucu gözle görülebilen ince tabakalar halinde oluşabilir. Bu karakteristik yaprak yaprak ayrılma dokusu, şistozite kavramını oluşturur. Diğer bir deyişle, şistozitesi oldukça belirgindir. Şistlerin mineralleri gözle ayırtlanabilir. Orta ve iri tanelidir. Şistlerde içerdikleri en fazla mineral cinsine göre sınıflandırırlar;

<span class="mw-page-title-main">Ultramafik kayaç</span>

Ultramafik kayaçlar ya da diğer adıyla ultrabazik kayaçlar, bünyesinde %45'ten daha az SiO2 bulunduran magmatik ve meta-magmatik kayaçlardır. Kayaçların bir diğer özelliği yüksek oranda MgO ve FeO bulundurmasıdır. Bu kayaçlar %90'dan daha fazla magnezyum ve demirce zengin, koyu renkli mineral içerir. Mantonun hemen tamamı ultramafik bileşimli malzemeden oluşmuştur. Dünit, piroksenit, gabro ve noritler magmatik-derinlik tipte önemli ultramafik kayaçlarken, komatit ve pikritik bazaltlar önemli volkanik ultramafik kayaçlardır. Serpentinitler ve talk-karbonatlar, ultramafik karakterde önemli metamorfik kayaçlardır. Kromit, manyezit, Cu-Pb-Zn mineralleri ve oldukça önemli olivin yatakları, dünyanın değişik yerlerinde ultramafik kayaçlara bağlı olarak oluşmuşlardır. Lateritik nikel yatakları da altere olmuş ultramafik kayaçlara bağlı olarak oluşurlar.

<span class="mw-page-title-main">Breş</span>

Breş, kırık çimentolu mineral parçalarından oluşan bir kaya veya ince taneli bir matris ile bir araya getirilmiş, kayaların bileşimine benzer veya bunlardan farklı olabilen bir kayadır.

<span class="mw-page-title-main">Dilinim</span>

Dilinim, yapısal jeoloji ve petrolojide, deformasyon ve metamorfizmanın bir sonucu olarak gelişir. Deformasyonun derecesi ve metamorfizma, kayaç türü ile birlikte gelişen yarılma özelliğinin türünü belirler. Genellikle bu yapılar basınçlı çözeltiden etkilenen minerallerden oluşan ince taneli kayaçlarda oluşur.

<span class="mw-page-title-main">Mineral hidrasyon</span>

Mineral hidrasyon, suyun bir mineralin kristal yapısına eklendiği, genellikle hidrat olarak adlandırılan yeni bir mineral oluşturduğu inorganik bir kimyasal reaksiyondur. Jeolojik açıdan, mineral hidrasyon süreci retrograd alterasyon olarak bilinir ve retrograd metamorfizmada meydana gelen bir süreçtir. Genellikle metasomatizme eşlik eder ve genellikle cevher gövdeleri etrafındaki duvar kayalarının değişiminin bir özelliğidir. Minerallerin hidrasyonu genellikle tektonik veya magmatik aktivite tarafından yönlendirilebilen hidrotermal dolaşım ile uyum içinde gerçekleşir.

<span class="mw-page-title-main">Volkanojenik masif sülfid cevher yatağı</span> kısaca masif maden

VMS cevher yatakları olarak da bilinen volkanojenik masif sülfid cevher yatakları, denizaltı ortamlarında volkanik ilişkili hidrotermal olaylarla ilişkili ve bu olaylar tarafından oluşturulan, başta bakır - çinko olmak üzere bir tür metal sülfit cevher yatağıdır.