İçeriğe atla

Sinkrotron

Sinkrotron (veya senkrotron) özel bir dairesel parçacık hızlandırıcı çeşididir. Siklotron kavramından üremiş olan sinkrotronda, parçacıklara yön veren manyetik alan, artan kinetik enerjili bir parçacık ışınına senkronize (eş zamanlı) olduğundan zaman bağımlıdır.

Sinkrotron, çok büyük tesislerin inşa edilmesine olanak veren ilk parçacık hızlandırıcı kavramlarından biriydi. Bunu ışın eğme, odaklama ve hızlandırmayı değişik kısımlara ayırarak başarmıştır.

İlk elektron sinkrotronu Edwin McMilan tarafından 1945'te inşa edilmiştir. McMillan farkında olmasa da, sinkrotronun ilkeleri Vladimir Veksler tarafından ilk defa Rusça bir bilimsel dergide basılmıştı.[1][2][3] İlk proton sinkrotronu Marcus Oliphant tarafından tasarlanmış ve 1952'de inşa edilmiştir.[2][4][5]

Çalışma Prensipleri

Relativistik parçacıklar için yörünge yarıçapı enerji ile artmaktadır. Pratikte, manyetik alanın üretilmesinde teorik bir limit vardır. Klasik mıknatıslarla 1.5 T, süper iletken mıknatıslarla B=5 T’ya kadar çıkılabilmektedir. Bu, enerjinin 1 GeV’den büyük olduğu durumlarda yarıçapın birkaç metre büyümesi demektir ve böylesine hızlı bir artışı dengeleyecek bir mıknatısın üretilebilmesi neredeyse imkânsızdır. Bu nedenle parçacığın her defasında küçük saptırıcı mıknatıslardan geçtiği fakat sabit yörüngede dolandığı hızlandırıcı fikri ortaya atıldı. Yarıçap sabit olduğundan denklemine göre sabit olmalıdır. Başka bir deyişle B manyetik alanı enerji ile senkronize (eş zamanlı) olarak artmalıdır. Bu tip hızlandırıcılara “sinkrotron” denir.

Sinkrotron, parçacığı hızlandırmak için bir ya da birden fazla RF kaynağı bulundurabilir. Sinkrotronun L çevresi, dalgaboyunun tam katı olmalıdır (senkronizim koşulu). Parçacıklar ancak bu sayede her defasında aynı fazda hızlandırıcı bölgeye gelmektedir. Sinkrotronlarda, eğer hızlandırılan parçacık elektron ise kendiliğinden elektromanyetik bir ışınım yayınlanmaktadır. Parçacığın enerjisi arttıkça yayınlanan radyasyonda artmaktadır. Sinkrotronlar, parçacıkları E=0 dan başlayan bir enerjiyle hızlandıramamaktadır. Bunun nedeni, tam olarak B=0'dan çalışmaya başlayan ve lineer olarak artan bir mıknatısın üretilememesidir. Bu sorun, parçacığın ideal yörüngesinden sapmasına ve demetin kaybolmasına neden olur. Bu nedenle, parçacıkların sinkrotrona gelmeden önce lineer hızlandırıcılarda belli bir enerjiye ulaşması sağlanır.

Kaynakça

  1. ^ J. David Jackson and W.K.H. Panofsky (1996). "EDWIN MATTISON MCMILLAN: A Biographical Memoir" (PDF). National Academy of Sciences. 21 Ekim 2012 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 15 Ocak 2012. 
  2. ^ a b Wilson. "Fifty Years of Synchrotrons" (PDF). CERN. 4 Mart 2016 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 15 Ocak 2012. 
  3. ^ Veksler, V. I. (1944). "A new method of accelerating relativistic particles". Comptes Rendus (Doklady) de l’Academie Sciences de l’URSS. 43 (8). ss. 329-331. 5 Aralık 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 6 Nisan 2013. 
  4. ^ Nature 407, 468 (28 September 2000) 18 Ekim 2016 tarihinde Wayback Machine sitesinde arşivlendi..
  5. ^ Rotblat, Joseph (28 Eylül 2000). "Obituary: Mark Oliphant (1901–2000)". Nature. 18 Ekim 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 15 Ocak 2012. 

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Elektron</span> Temel elektrik yüküne sahip atomaltı parçacık

Elektron, eksi bir temel elektrik yüküne sahip bir atomaltı parçacıktır. Lepton parçacık ailesinin ilk nesline aittir ve bileşenleri ya da bilinen bir alt yapıları olmadığından genellikle temel parçacıklar olarak düşünülürler. Kütleleri, protonların yaklaşık olarak 1/1836'sı kadardır. Kuantum mekaniği özellikleri arasında, indirgenmiş Planck sabiti (ħ) biriminde ifade edilen, yarım tam sayı değerinde içsel bir açısal momentum (spin) vardır. Fermiyon olmasından ötürü, Pauli dışarlama ilkesi gereğince iki elektron aynı kuantum durumunda bulunamaz. Temel parçacıkların tamamı gibi hem parçacık hem dalga özelliklerini gösterir ve bu sayede diğer parçacıklarla çarpışabilir ya da kırınabilirler.

<span class="mw-page-title-main">Avrupa Nükleer Araştırma Merkezi</span> Avrupa Nükleer Araştırma Merkezi veya Fransızca adı olan Conseil Européen pour la Recherche Nucléairein kısaltmasıyla CERN, İsviçre ve Fransa sınırında yer alan, dünyanın en büyük parçacık fiziği laboratuvarını yöneten araştırma

Avrupa Nükleer Araştırma Merkezi veya Fransızca adı olan Conseil Européen pour la Recherche Nucléaire'in kısaltmasıyla CERN, İsviçre ve Fransa sınırında yer alan, dünyanın en büyük parçacık fiziği laboratuvarını yöneten araştırma kuruluşudur. 1954 yılında 12 ülkenin katılımıyla kurulmuş olan CERN'in 23 tam üyesi vardır. İsrail, Avrupa dışında yer alan tek tam üyedir. Türkiye, ortak üye statüsündedir.

<span class="mw-page-title-main">Mıknatıs</span> manyetik alan üreten nesne veya malzeme

Mıknatıs ya da demirkapan, manyetik alan üreten nesne veya malzemedir. Demir, nikel, kobalt gibi bazı metalleri çeker, bakır ve alüminyum gibi bazı metallere ve metal olmayan malzemelere etki etmez.

<span class="mw-page-title-main">Alternatör</span> Mekanik enerjiyi alternatif akıma çeviren aygıt.

Alternatör, mekanik enerjiyi alternatif akım biçiminde elektrik enerjisine dönüştüren bir elektrik jeneratörüdür. Maliyet ve basitlik nedenleriyle, çoğu alternatör sabit armatürle dönen manyetik alan kullanır. Bazen, sabit bir manyetik alanlı doğrusal bir alternatör veya dönen bir armatür kullanılır. Prensipte, herhangi bir AC elektrik jeneratörüne alternatör denebilir, ancak genellikle terim otomotiv ve diğer içten yanmalı motorlar tarafından tahrik edilen küçük dönen makineleri ifade eder.

<span class="mw-page-title-main">Parçacık hızlandırıcı</span>

Parçacık hızlandırıcı, yüklü parçacıkları yüksek hızlara çıkarmak ve demet halinde bir arada tutmak için elektromanyetik alanları kullanan araçların genel adıdır. Büyük hızlandırıcılar parçacık fiziğinde çarpıştırıcılar olarak bilinirler. Diğer tip parçacık hızlandırıcılar, kanser hastalıklarında parçacık tedavisi, yoğun madde fiziği çalışmalarında senkrotron ışık kaynağı olmaları gibi birçok farklı uygulamalarda kullanılır. Şu an dünya çapında faaliyette olan 30.000'den fazla hızlandırıcı bulunmaktadır.

Antimadde, karşı madde veya karşıt madde, maddenin ters ikizi. Paul Dirac denklemiyle ortaya çıkarılmış ve daha sonraki gözlemlerle de varlığı doğrulanmıştır. Antimadde en basit hâliyle normal maddenin zıddıdır. Antimaddenin atomaltı parçacıkları, normal maddeye göre zıt özellikler taşımaktadır. Bu atomaltı parçacıkların elektrik yükleri, normal maddenin atomaltı parçacıklarının tam tersidir. Antimadde, Büyük Patlama'dan sonra normal maddeyle birlikte oluşmuştur; fakat sebebinin ne olduğunu bilim insanları tam anlamıyla bilemeseler de evrende oldukça nadir bulunmaktadır.

<span class="mw-page-title-main">Elektrik üreteci</span> Mekanik enerjiyi elektrik enerjisine dönüştüren aygıt

Elektrik üretiminde jeneratör, harekete dayalı gücü veya yakıta dayalı gücü harici bir devrede kullanılmak üzere elektrik gücüne dönüştüren bir cihazdır. Mekanik enerji kaynakları arasında buhar türbinleri, gaz türbinleri, su türbinleri, içten yanmalı motorlar, rüzgar türbinleri ve hatta el krankları bulunur. İlk elektromanyetik jeneratör olan Faraday diski, 1831 yılında İngiliz bilim adamı Michael Faraday tarafından icat edildi. Jeneratörler elektrik şebekeleri için neredeyse tüm gücü sağlar.

<span class="mw-page-title-main">Tevatron</span>

Tevatron, Amerika Birleşik Devletleri'nin Chicago şehrinin doğusundaki Fermilab'da bulunan dairesel bir parçacık hızlandırıcısıdır. 2011 yılına kadar, kendisine 150 GeV olarak yollanan proton ve antiprotonları hızlandırıp, 1.96 TeV kütle merkezi enerjisinde 2 ayrı noktada çarpıştırmaktaydı. Bu özellik onu 2010'da CERN'deki LHC hızlandırıcısı devreye girinceye kadar dünyadaki en yüksek enerjili çarpıştırıcı yapmıştı. Yapımı $120 milyona yakın tutan Tevatron 1983 yılında tamamen bitirildi. Üzerine 1983-2011 yılları arasında büyük miktarlarda yatırımlar yapıldı.

<span class="mw-page-title-main">Samuel C. C. Ting</span>

Samuel Chao Chung Ting; "yeni bir tür temel ağır parçacığın keşfindeki öncü çalışmaları için" Burton Richter ile birlikte 1977 Nobel Fizik Ödülü'nü kazanan Çin kökenli Amerikalı fizikçidir.

<span class="mw-page-title-main">Siklotron</span> bir çeşit parçacık hızlandırıcı

Siklotron bir çeşit parçacık hızlandırıcıdır. Siklotronlar yüklü parçacıkları yüksek frekanslı alternatif gerilim kullanarak hızlandırır.

<span class="mw-page-title-main">Kabarcık odası</span>

Kabarcık odası, oda boyunca hareket eden elektriksel olarak yüklü parçacıkların tespiti için kullanılan bir parçacık algılayıcıdır. Kabarcık odaları süper ısıtılmış saydam bir sıvıyla doludur. Mucidine 1960'ta Nobel Fizik Ödülü kazandıran kabarcık odası 1952'de Donald A. Glaser tarafından icat edildi ve sonraki yirmi yıl boyunca parçacık fiziğinde ve özellikle de acayip parçacık araştırmalarında baskın bir rol üstlendi.

Işık ötesi hız, ışıktan hızlı bilgi aktarımı ve ışıktan hızlı yolculuk, bilginin ve maddenin ışık hızının daha üstünde hızlarla hareket etmesi halinde kazanacağı hız. Özel görelilik kuramına göre, kütlesi olan ve ışık hızından düşük hıza sahip olan bir parçacığın ışık hızına ulaşabilmesi için sonsuz enerjiye ihtiyacı vardır. Ne var ki özel görelilik, ışıktan hızlı hareket eden kütleli parçacıkların varlığını her zaman yasaklamaz.

<span class="mw-page-title-main">Hareket eden mıknatıs ve iletken problemi</span> düşünce deneyi

Hareketli mıknatıs ve iletken problemi 19. yüzyılda ortaya çıkan, klasik elektromanyetizma ve özel görelilik kesişimi ile ilgili ünlü bir düşünce deneyidir. Mıknatısa göre sabit hız (v) ile hareket eden iletkendeki akım, mıknatısın ve iletkenin referans sistemlerinde hesaplanır. "Sadece "göreli" hareket gözlemlenebilir, diğerlerinin mutlak bir standardı yoktur." diye belirten temel görelilik ilkesi doğrultusunda, deneydeki gözlemlenebilir miktar olan akım, her durumda aynıdır. Ancak, Maxwell denklemlerine göre, iletkendeki yük, mıknatıs referans sisteminde "manyetik kuvvete" ve iletken referans sisteminde "elektrik kuvvetine" maruz kalır. Aynı olgu, gözlemcinin referans sistemine bağlı olarak iki farklı tanımları var gibi görünebilir.

<span class="mw-page-title-main">Carlo Rubbia</span> İtalyan fizikçi

Carlo Rubbia, İtalyan Cumhuriyeti Liyakat Nişanı, CERN'de W ve Z parçacıklarının keşfindeki büyük katkılarından dolayı 1984 Nobel Fizik Ödülünü, Simon van der Meer ile paylaşan İtalyan parçacık fizikçisi ve mucit.

Fizikçi Max Planck'tan sonra adlandırılan Planck parçacığı, Compton dalga boyu ile Schwarzschild yarıçapının eşit olduğu parçacığın kara delik kadar sıkıştırılması varsayımı ile elde edilmiştir. Kütlesi yaklaşık olarak Planck kütlesine eşittir ve Compton dalga boyu ile Schwarzschild yarıçapı yaklaşık olarak Planck uzunluğu kadardır. Planck kütlesi ve Planck uzunluğunu tanımlamak için bazen Planck parçacıkları ifadesi kullanılır. Bu parçacıklar Planck çağında evrenin oluşmasındaki bazı modellerde rol oynadı.

<span class="mw-page-title-main">Paul Scherrer Enstitüsü</span> İsviçrede bir araştırma enstitüsü

Paul Scherrer Institute (PSI) ETH Zürih ve EPFL'yi de kapsayan İsviçre ETH-Komplex'e ait çok disiplinli bir araştırma enstitüsüdür. 1960'ta kurulan EIR ve 1968'de kurulan SIN birleştirilmesi ile 1988 yılında kurulmuştur.

Hızlandırıcı fiziği uygulamalı fiziğin bir alt dalıdır. Genellikle, parçacık hızlandırıcı; inşası, tasarımı ve kullanılmasıyla ilgilenir. Bu konuda genellikle hareket konularını, rölativistik etkilerin parçacıklar ve parçacık huzmelerine etkisi ve parçacıkların birbirleriyle etkileşimlerini göz önünde bulundururlar. Özellikle hızlandırıcı inşasında elektrik alan ve manyetik alan özelliklerinden yararlanılır.

<span class="mw-page-title-main">Çarpıştırıcı</span>

Çarpıştırıcı, yönlendirilmiş parçacık ışınlarını içeren bir tür parçacık hızlandırıcıdır. Çarpıştırıcılar, halka hızlandırıcı veya doğrusal hızlandırıcı olabilir ve tek bir parçacık ışınını durağan bir hedefe veya başka bir ışına çarpıştırabilirler.

<span class="mw-page-title-main">HERA (parçacık hızlandırıcı)</span>

HERA, Hamburg'daki DESY'de bir parçacık hızlındırıcıydı. 1992'de faaliyete başladı. HERA'daki elektron'lar veya pozitron'lar, 318 GeV'lik bir kütle enerjisi merkezinde proton'larla çarpıştırıldı. Çalışırken dünyadaki tek lepton-proton çarpıştırıcısıydı. Ayrıca, kinematik aralığın belirli bölgelerinde enerji sınırındaydı. HERA 30 Haziran 2007'de kapatıldı.

<span class="mw-page-title-main">Lineer motor</span>

Lineer motor, doğrusal motor ya da doğrusal hareketli motor, statoru ve rotoru "açık" bir elektrik motorudur. Bu nedenle tork oluşturmak yerine uzunluğu boyunca doğrusal bir kuvvet üretir. Ancak bütün lineer motorlar düz değildir. Lineer motorun aktif bölümünün uçları vardır oysa geleneksel elektrik motorlarında ise döngü süreklidir.