İçeriğe atla

Sinüs (matematik)

Sinüs
Genel bilgiler
Genel tanım
Buluş motivasyonuHint astronomisi
Çözüm tarihiGupta dönemi
Uygulama alanlarıTrigonometri, İntegral dönüşüm, Fourier serisi, vb.
Tanım kümesi, değer kümesi ve görüntü kümesi
Tanım kümesi(−, +) a
Görüntü kümesi[−1, 1] a
Temel özellikler
Eşliktek
Periyot2π
Belirli değerler
Sıfırda değeri0
Maksimum(2kπ + π/2, 1)b
Minimum(2kππ/2, −1)
Belirli özellikler
Kökkπ
Kritik noktakπ + π/2
 · kπ
 · 0
İlgili fonksiyonlar
Çarpımsal tersKosekant
TersArksinüs
Türev
Terstürev
Diğer İlişkilicos, tan, csc, sec, cot
Seri tanımı
Taylor serisi
Genelleştirilmiş sürekli kesir

Sinüs'ün periyodunun gösterimi.
Sinüs'ün dik üçgende gösterimi. o/h.

Matematikte sinüs, trigonometrik bir fonksiyon. Sin kısaltmasıyla ifade edilir.

Merkezi orijin olan 1 birim yarıçaplı çember üzerindeki bir noktanın y eksenine göre koordinatıdır. Orijinden noktaya çizilen bir doğrunun y ekseniyle yaptığı açı kullanılarak ya da aynı açıya sahip bir dik üçgende, bu açının karşısındaki kenarın hipotenüse bölümüyle hesaplanır.

Sinüs fonksiyonu çoğunlukla ışık, ses, harmonik osilatörlerin konumu ve hızı, güneş ışığı yoğunluğu, gündüz uzunluğu ve yıl içindeki ortalama sıcaklık değişimleri gibi periyodik olayları modellemek için kullanılır.

Sinüs fonksiyonunun tarihi Gupta dönemi Hint astronomisinde kullanılan jyā ve koṭi-jyā fonksiyonlarına kadar uzanır. Sinüs fonksiyonu Sanskritçe'den Arapçaya, daha sonra Arapçadan Latince'ye çevrilmiştir.[1]

Dik üçgen tanımı

Bir dar açı olan α'nın sinüsünü tanımlamak için α açısını içeren bir dik üçgen düşünün. Yandaki görselde  açısı ilgili açı olmak üzere ABC üçgeninin üç kenarını şu şekilde isimlendirebiliriz:

  • Karşı kenar, ilgili açının karşısındaki kenardır (yandaki üçgende o kenarıdır).
  • Hipotenüs, dik açının karşısındaki kenardır (yandaki üçgende h kenarıdır). Hiptenüs bir dik açılı üçgende her zaman en uzun kenardır.
  • Komşu kenar, son kalan kenardır (yandaki üçgende a kenarıdır). Komşu kenar hem dik açıya hem de ilgili açıya komşudur.

Böyle bir üçgende açının sinüsü karşı kenarın hipotenüsü bölümü ile bulunur, veya:

Diğer trigonometrik fonksiyonlar da benzer şekilde tanımlanabilir; Mesela, bir açının kosinüsü komşu kenar ile hipotenüsün oranıdır, bununla beraber tanjant karşı kenar ile komşu kenarın oranınıdır.

Birim çember tanımı

Trigonometride birim çember, yarıçapı bir olan ve Kartezyen koordinat sisteminde merkezi orijin'de (0, 0) olan çemberdir.

Orijinden geçen ve x ekseninin pozitif yarımıyla θ açısı yapan bir çizginin birim çember ile kesişimi bir nokta verir. Bu kesişim noktasının x ve y koordinatları sırasıyla cos(θ) ve sin(θ)'e eşittir.

Dik üçgen tanımının aksine birim çember tanımındaki açı bütün gerçek sayılar olabilir.

Özdeşlikler

Bunlar 'nın tüm değerleri için geçerlidir.

Çarpmaya göre tersi

Sinüs fonksiyonunun çarpmaya göre tersi kosekanttır. Başka bir deyişle sin(A)'nın çarpmaya göre tersi csc(A) veya cosec(A)'dır. Bir dik üçgende, hipotenüs'ün karşı dik kenara oranına kosekant denir:

Ters fonksiyonu

Sinüs fonksiyonunun tersi arcsinüstür. y = arcsin(x) fonksiyonu sin(y) = x olarak ifade edilebilir. sin(y) = x'i ifade eden birçok y sayısı vardır. Örneğin sin(0) = 0, aynı zamanda sin(π) = 0, sin(2π) = 0 vb. arcsin fonksiyonu da çok değerlidir: arcsin(0) = 0, aynı zamanda arcsin(0) = π, arcsin(0) = 2π vb. Yalnızca tek bir değer belirtildiğinde, fonksiyon kısıtlanır. Bu kısıtlama ile, tanım kümesindeki her bir x için arcsin(x) ifadesi yalnızca tek bir değere karşılık gelir, bu da asıl değer olarak adlandırılır. Bu özellikler tüm ters trigonometrik fonksiyonlarda uygulanır.

k:

Tek bir denklemde:

için bu iki denklem doğru olabilir

ve

Kalkülüs

Sinüs fonksiyonu için:

Türevi:

İlkel fonksiyonu:

C entegrasyon sabitini temsil ediyor.

Yazılımdaki uygulamaları

Diğer trigonometrik fonksiyonlarla beraber sinüs fonksiyonu birçok programlama dillerinde ve platformlarında mevcuttur. Bilgi işlemde genel olarak sin şeklinde kısaltılır.

Intel x87 FPU'ların 80387 ve daha sonraki jenerasyonlarında olduğu gibi bazı CPU mimarileri sinüs için hazır talimatlar içerir.

Proglamlama dillerinde sin genelde ya hazır bir fonksiyondur ya da dilin standart matematik kütüphanesinde bulunur.

Örneğin, C standart kütüphanesinde sinüs fonksiyonları math.h dosyasında tanımlıdır: sin(double), sinf(float) ve sinl(long double). Her fonksiyonun parametrelerinin veri tipi kayan noktadır ve radyan türünden bir açıyı belirtir. Her fonksiyon aldığı veri tipini geri verir. C standart kütüphanesinde sinüsle beraber bir sürü başka trigonometrik fonksiyon da tanımlanmıştır, mesela kosinüs, arksinüs ve hiperbolik sinüs(sinh).

Benzer olarak, Python dilinde de sinüs fonksiyonu (math.sin(x)) hazır math modülünde tanımlıdır. CPython'un matematik fonksiyonları C math kütüphanesini çağırır.

Sinüs hesaplamak için standart bir algoritma yoktur. kayan nokta hesaplamaları için kullanılan en yaygın standart IEEE 754-2008 sinüs gibi trigonometrik fonksiyonların hesaplanması hakkında bilgi vermemektedir.[2]

Sinüs hesaplamak için kullanılan algoritmalar hız, kesinlik, taşınabilirlik veya veri girişi aralığı gibi sınırlamalar için dengelenebilir. Bu, farklı algoritmaların farklı sonuçlar vermesine yol açabilir, özellikle çok büyük veri girişi (Örneğin: sin(1022)) gibi özel durumlar için.

Özellikle 3 boyutlu bilgisayar grafiklerinde kullanılan yaygın bir optimizasyon tekniği sinüs değerlerinin bir tablosunu önceden hesaplamaktır, örnepin her derece için bir değer. Bu yöntem her seferinde değeri hesaplamak yerine u tablodan bakıp kullanmayı sağlar.

CORDIC algoritması bilimsel hesap makinelerinde yaygın olarak kullanılmaktadır.

Tur tabanlı uygulamaları

Bazı yazılım kütüphaneleri veri giriş açısını yarım tur (180 derece) veya radyan olarak almaktadır. Açıyı yarım turla veya turla ifade etmek bazen kesinliklik ve verimlilik avantajları sağlayabilir.[3][4]

EnvironmentFunction nameAngle units
MATLAB sinpi[3]yarım tur
OpenCL sinpi[5]yarım tur
R sinpi[4]yarım tur
Julia sinpi[6]yarım tur
CUDA sinpi[7]yarım tur
ARM sinpi[8]yarım tur

Ayrıca bakınız

Kaynakça

  1. ^ Uta C. Merzbach, Carl B. Boyer (2011), A History of Mathematics, Hoboken, N.J.: John Wiley & Sons, 3rd ed., p. 189.
  2. ^ Grand Challenges of Informatics, Paul Zimmermann. September 20, 2006 – p. 14/31 "Archived copy" (PDF). 16 Temmuz 2011 tarihinde kaynağından arşivlendi (PDF). Erişim tarihi: 11 Eylül 2010. 
  3. ^ a b "MATLAB Documentation sinpi 7 Ağustos 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  4. ^ a b "R Documentation sinpi 7 Ağustos 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  5. ^ "OpenCL Documentation sinpi 27 Ekim 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  6. ^ "Julia Documentation sinpi 20 Şubat 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  7. ^ "CUDA Documentation sinpi 7 Ağustos 2020 tarihinde Wayback Machine sitesinde arşivlendi.
  8. ^ "ARM Documentation sinpi 17 Ekim 2019 tarihinde Wayback Machine sitesinde arşivlendi.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Trigonometri</span> üçgenlerin açı ve kenar bağıntılarını konu alan geometri dalı

Trigonometri, üçgenlerin açıları ile kenarları arasındaki bağıntıları konu edinen matematik dalı. Trigonometri, sinüs ve kosinüs gibi trigonometrik işlevlerin (fonksiyon) üzerine kurulmuştur ve günümüzde fizik ve mühendislik alanlarında sıkça kullanılmaktadır.

<span class="mw-page-title-main">Kosinüs</span>

Kosinüs, trigonometrik bir fonksiyon. Cos kısaltmasıyla ifade edilir.

<span class="mw-page-title-main">Trigonometrik fonksiyonlar</span>

Trigonometrik fonksiyonlar, matematikte bir açının işlevi olarak geçen fonksiyonlardır. Geometride üçgenleri incelerken ve periyodik olarak tekrarlanan olayları incelerken sıklıkla kullanılırlar. Genel olarak bir açısı belirli dik üçgenlerde herhangi iki kenarın oranı olarak belirtilirler, ancak birim çemberdeki belirli doğru parçalarının uzunlukları olarak da tanımlanabilirler. Daha çağdaş tanımlarda sonsuz seriler veya belirli bir türevsel denklemin çözümü olarak geçerler.

<span class="mw-page-title-main">Tanjant</span>

Tanjant, trigonometrik bir fonksiyondur. "tan" ile ifade edilir.

<span class="mw-page-title-main">Kosekant</span>

Kosekant trigonometrik bir fonksiyondur. Trigonometrik sinüs fonksiyonunun tersi olarak da tanımlanabilir. cosec veya csc olarak ifade edilebilir.

<span class="mw-page-title-main">Kardiyoit</span>

Matematikte kardiyoit veya yürek eğrisi, sabit bir çember üzerinde yuvarlanmakta olan aynı yarıçaplı ikinci bir çember üzerindeki herhangi bir noktanın izlediği eğridir. İsmi Yunanca kardia (kalp) ve eidos (şekil) kelimelerinin birleşiminden oluşur. Kalp (♥) şeklini anımsattığı için bu ismi almıştır. Kardiyoit ismini ilk kullanan, 18. yüzyıl İtalyan matematikçisi Johann Castillon olmuştur.

<span class="mw-page-title-main">Trigonometri tarihi</span>

Üçgenlerle ilgili erken çalışmalar, Mısır matematiği ve Babil matematiğinde MÖ 2. binyıla kadar izlenebilir. Trigonometri, Kushite matematiğinde de yaygındı. Trigonometrik fonksiyonların sistematik çalışması Helenistik matematikte başladı ve Helenistik astronominin bir parçası olarak Hindistan'a ulaştı. Hint astronomisinde trigonometrik fonksiyonların incelenmesi, özellikle sinüs fonksiyonunu keşfeden Aryabhata nedeniyle Gupta döneminde gelişti. Orta Çağ boyunca, trigonometri çalışmaları İslam matematiğinde El-Hârizmî ve Ebu'l-Vefâ el-Bûzcânî gibi matematikçiler tarafından sürdürüldü. Altı trigonometrik fonksiyonun da bilindiği İslam dünyasında trigonometri bağımsız bir disiplin haline geldi. Arapça ve Yunanca metinlerin tercümeleri trigonometrinin Latin Batı'da Regiomontanus ile birlikte Rönesans'tan itibaren bir konu olarak benimsenmesine yol açtı. Modern trigonometrinin gelişimi, 17. yüzyıl matematiği ile başlayan ve Leonhard Euler (1748) ile modern biçimine ulaşan Batı Aydınlanma Çağı boyunca değişti.

Periyodik fonksiyon, matematikte belli zaman aralığıyla kendini tekrar eden olguları ifade eden fonksiyonlara verilen isimdir. Tekrar etme süresi "periyot" olarak bilinir. Trigonometrik fonksiyonlar en tipik periyodik fonksiyonlardır. Bununla birlikte, diğer periyodik fonksiyonlar da trigonometrik fonksiyonların toplamı olarak ifade edilebilirler.

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

<span class="mw-page-title-main">Kiriş (geometri)</span>

Geometride kiriş, bir çemberde, iki uç noktası da çemberin üstünde bulunan doğru parçası. Sekant, sekant doğrusu veya kesen, bir kirişin doğruya uzatılmış halidir. Diğer bir ifadesiyle, kiriş bir kesenin çember içinde kalan kısmıdır. Kiriş daha genel anlamıyla, herhangi bir eğrinin iki noktasını birleştiren doğru parçasıdır. Çemberin merkezinden geçen kiriş, aynı zamanda çemberdeki en uzun kiriş, o çemberin çapıdır.

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

<span class="mw-page-title-main">Birim çember</span> trigonometri ve mampo da çok işlemi olmuş bir çemberdi ve çok kolay bir yönetimi vardır birim çemberi matematiğin temelini olustur bu yüzden çok önemli bir cemberdir

Birim çember Matematikte, yarıçapı bir birim olan çembere birim çember denir. Çoğunlukla, özellikle trigonometride, Öklid düzlemine göre Kartezyen koordinat sisteminde, merkezi orijin üzerinde (0,0) olan ve yarıçapı bir birim olan çemberdir. n birim çember sıklıkla S1; olarak ifade edilir. Genellikle daha büyük boyutları ise birim küredir. (x, y) birim çember üzerinde bir nokta olduğunda, |x| ve |y|, dik olan ve hipotenüsü bir olan üçgenin diğer kenar uzunluklarıdır. Bu nedenle, Pisagor teoremine göre, x ve y bu denklemi karşılamaktadır.

<span class="mw-page-title-main">Thales teoremi</span>

Geometride, Thales teoremi, A, B ve C, AC çizgisinin bir çap olduğu bir daire üzerinde farklı noktalar ise, ∠ABC açısının bir dik açı olduğunu belirtir. Thales teoremi, çevre açı teoreminin özel bir durumudur ve Öklid'in Elemanlar adlı eserinin üçüncü kitabında 31. önermenin bir parçası olarak bahsedilmiş ve kanıtlanmıştır. Genellikle, teoremin keşif için şükran kurbanı olarak bir öküz sunduğu söylenen Miletli Thales'e atfedilir, ancak bazen Pisagor'a da atfedilir.

Trigonometride, trigonometrik özdeşlikler trigonometrik fonksiyonları içeren ve eşitliğin her iki tarafının da tanımlandığı değişkenlerin her değeri için doğru olan eşitliklerdir. Geometrik olarak, bunlar bir veya daha fazla açının belirli fonksiyonlarını içeren özdeşliklerdir. Bunlar üçgen özdeşliklerinden farklıdır, bunlar potansiyel olarak açıları içeren ama aynı zamanda kenar uzunluklarını veya bir üçgenin diğer uzunluklarını da içeren özdeşliklerdir.

Matematikte, trigonometrik fonksiyonların değerleri gibi yaklaşık olarak veya gibi tam olarak ifade edilebilir. Trigonometrik tablolar birçok yaklaşık değer içerirken, belirli açılar için kesin değerler aritmetik işlemler ve karekök kombinasyonu ile ifade edilebilir. Bu şekilde ifade edilebilen trigonometrik değerlere sahip açılar tam olarak pergel ve düzeç ile inşa edilebilen açılardır ve bu değerlere inşa edilebilir sayılar denir.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.

<span class="mw-page-title-main">Trigonometrik yerine koyma</span> trigonometrik fonksiyonları içeren integrallerin hesaplanması için yöntem

Matematikte, bir trigonometrik yerine koyma veya trigonometrik ikame, trigonometrik fonksiyon yerine başka bir ifadeyi koyar. Kalkülüste trigonometrik ikameler integralleri hesaplamak için kullanılan bir tekniktir. Bu durumda, radikal fonksiyon içeren bir ifade trigonometrik bir ifade ile değiştirilir. Trigonometrik özdeşlikler cevabı basitleştirmeye yardımcı olabilir. Diğer yerine koyma yoluyla integrasyon yöntemlerinde olduğu gibi, belirli bir integrali değerlendirirken, integrasyon sınırlarını uygulamadan önce, ters türevin sonucunu tam olarak çıkarmak daha basit olabilir.

Trigonometrik fonksiyonların türevleri, trigonometrik bir fonksiyonun türevini yani bir değişkene göre değişim oranını bulmanın matematiksel sürecidir. Örneğin, sinüs fonksiyonunun türevi şeklinde yazılır, bu da sin(x) fonksiyonunun belirli bir açı x = a için değişim oranının o açının kosinüsü ile verildiği anlamına gelir.

<span class="mw-page-title-main">Pisagor trigonometrik özdeşliği</span> sin² θ + cos² θ = 1

Pisagor trigonometrik özdeşliği, daha basit ifadeyle Pisagor özdeşliği olarak da adlandırılır, Pisagor teoremini trigonometrik fonksiyonlar cinsinden ifade eden bir özdeşliktir. Açıların toplam formülleri ile birlikte, sinüs ve kosinüs fonksiyonları arasındaki temel bağıntılardan biridir. Özdeşlik şu şekildedir: