İçeriğe atla

Simetri (fizik)

FCC kafesinin ilk Brillouin bölgesi simetri etiketleri gösteriliyor

Fizikte eşbakışım (simetri), herhangi bir gözlenebilir büyüklük düşünüldüğünde belirli dönüşümler altında sistemin bazı özelliklerin değişmeyişini anlatır. Bir fizik siteminin eşbakışımı sistemin fizik veya matematik ile ilgili gözlemlenebilir veya içsel ve bazı etkenlerin değişmesi altında değişmeyen bir özelliğini ifade eder.

Herhangi bir dönüşüm sürekli veya kesikli olabilir. Sürekli dönüşüme örnek olarak, koordinat sistemi merkezi etrafında belirli bir r yarıçapında olan dönüş hareketi örnek olarak gösterilebilir. Kesikli dönüşüme ise koordinat sisteminin herhangi bir eksenine konmuş bir aynada oluşan dönüşüm düşünülebilir.

Matematikte, eğer bir dönüşüm altında değişmeyen bir değer varsa o değişmez olarak adlandırılır. Bu matematikte olan durum, fizik ile ilgili sistemlere de uygulanabilir bir durumdur. Örnek olarak bir odanın her yerinde aynı olan sıcaklığı düşünebiliriz. Odanın her yerinde sıcaklık aynı olduğu için oda içerisinde olan herhangi bir konum değişikliği altında sıcaklık değişmemektedir ve sıcaklık bu sistemin değişmezidir.

Başka bir örnek de, merkezi veya herhangi bir şey etrafında dönen küredir. Bu dönme hareketine karşılık, kürenin kapladığı uzayda herhangi bir değişim meydana gelmez ve bu küresel eşbakışımdır.

Sürekli simetriler

uzayzaman simetrileri

Uzay-zaman simetrileri süreklisi uzay ve zamanın dönüşümlerini içeren simetrilerdir. Burada uzaysal simetrileri ileri bir sınıflandırma olabilir, bir fiziksel sistem ile ilgili yalnızca uzaysal geometri içerir; zamansal simetriler,yalnızca zamandaki değişiklikleri içerir; veya uzay-zaman simetrileri,hem uzay ve hem de zamandaki değişiklikleri içerir.

  • Zaman öteleme: Bir fiziksel sistemin zamanının belli bir aralığı üzerinde aynı özellikleri olabilir; Bu gerçek sayıların herhangi bir aralığı içinde t ve a için dönüşümleri altında değişmez olarak matematiksel ifadesidir. Örneğin, klasik mekanikte, sadece çekim etkisi ile harekete geçecek bir parçacık Yerin yüzeyinden yukarıda bir yükseklikten asılı ise çekimsel potansiyel enerjisi varolacak. Varsayalım parçacığın yüksekliği içinde değişiklik yok, bu tüm zamanlarda parçacıkların çekimsel potansiyel enerjileri olacak. Başka ve da ayrıca bazı zamanlarda(saniyede) parçacıkların durumu düşünüldüğünde, parçacık'ların toplam çekimsel potansiyel enerji korunacak diyebiliriz.
  • uzaysal öteleme: Burada uzaysal simetriler formunun dönüşümleri ile gösterilir ve yerleşim içinde bir sürekli değişiklik olmadan sistemin burada bir özelliği böyle durumları tanıtır .Örneğin bir oda içinde ısı burada termometreden bağımsız olarak odanın içinde yerleşiktir.
  • uzaysal dönme: Bu uzaysal simetriler uygun dönmeler ve uygunsuz dönmeler olarak sınıflandırılır .İkincisi sadece 'sıradan' rotasyonlar vardır; matematiksel olarak, birim determinant ile kare matrisleri ile temsil edilmektedir, sonuncusu determinant ile kare matrisler ile temsil -1 ve mekansal yansıması ile birlikte uygun bir dönme oluşur, (inversiyon). Örneğin, bir kürede uygun dönme simetrisi var.Uzaysal dönmelerin diğer tipleri Dönme simetrisi.makalesinde tanımlanıyor.
  • Poincaré dönüşümleri: Bunların Minkowski uzayzamanı içinde yani Minkowski uzay izometrilerinde mesafeleri koruyan uzay-zamansal simetrileri vardır. Onlar özel görelilikte öncelikle incelenir. Sabitlenmiş başlangıcı bırakmış olan böyle izometrilere Lorentz dönüşümleri denir ve Lorentz eşdeğişkeni olarak bilinen simetriler meydana getirirler.
  • izdüşümsel simetriler: Bunlar uzayzaman simetrileri ve onun jeodezik yapısını koruyan uzay-zamansal simetriler vardır. Onlar herhangi bir düz manifold üzerinde tanımlı, ancak genel görelilik içinde kesin çözümler çalışmasında birçok uygulama bulunabilir.
  • Ters dönüşümler: Bu diğer konformal uzay-zaman koordinatlarda bire-bir dönüşümler dahil Poincare dönüşümlerinin genellemesi için uzay-zamansal simetriler vardır. Uzunluklar ters dönüşümler altında değişmez değildir ama değişmeyen dört noktalarda çapraz oranı mevcuttur.

Matematiksel olarak, genellikle uzayzaman simetrileri bir düzgün manifold üzerinde düzgün vektör alanı ile tanıtılır.Vektör alanları ile ilişkili yerel difeomorfizmin altında yatan fiziksel simetrilere daha doğrudan karşılıktir, ancak vektör alanlarınınin kendisi fiziksel sistem simetrileri sınıflandırılirken daha sık kullanılır.

En önemli vektör alanlarından biri Killing vektör alanıdır bir manifoldun yapısı metrik altında yatan böyle uzayzaman simetrilerini korur. Kaba anlamda, Killing vektör alanları manifoldunun herhangi iki nokta arasındaki mesafeyi korur ve sık sık İzometrileri adıyla girilir.

Ayrıca bakınız

Kaynakça

Genel Bilgiler

Teknik

  • Brading, K., and Castellani, E., eds. (2003) Symmetries in Physics: Philosophical Reflections. Cambridge Univ. Press.
  • -------- (2007) "Symmetries and Invariances in Classical Physics" in Butterfield, J., and John Earman, eds., Philosophy of Physic Part B. North Holland: 1331-68.
  • Debs, T. and Redhead, M. (2007) Objectivity, Invariance, and Convention: Symmetry in Physical Science. Harvard Univ. Press.
  • John Earman (2002) "Laws, Symmetry, and Symmetry Breaking: Invariance, Conservations Principles, and Objectivity. 19 Temmuz 2013 tarihinde Wayback Machine sitesinde arşivlendi." Address to the 2002 meeting of the Philosophy of Science Association.
  • Mainzer, K. (1996) Symmetries of nature. Berlin: De Gruyter.
  • Mouchet, A. "Reflections on the four facets of symmetry: how physics exemplifies rational thinking". European Physical Journal H 38 (2013) 661 hal.archives-ouvertes.fr:hal-00637572 28 Aralık 2013 tarihinde Wayback Machine sitesinde arşivlendi.
  • Thompson, William J. (1994) Angular Momentum: An Illustrated Guide to Rotational Symmetries for Physical Systems. Wiley. ISBN 0-471-55264.
  • Bas Van Fraassen (1989) Laws and symmetry. Oxford Univ. Press.
  • Eugene Wigner (1967) Symmetries and Reflections. Indiana Univ. Press.

Dış bağlantılar

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Özel görelilik</span> izafiyet teorisi, uzay ve zaman arasındaki ilişkiyi açıklayan bir bilimsel teoridir

Fizikte, özel görelilik teorisi veya izafiyet teorisi, uzay ve zaman arasındaki ilişkiyi açıklayan bir bilimsel teoridir. Albert Einstein'ın orijinal çalışmalarında teori, iki varsayıma dayanmaktadır:

  1. Fizik yasaları, tüm süredurum referans çerçevelerinde değişmezdir.
  2. Işık kaynağının veya gözlemcinin hareketinden bağımsız olarak vakumdaki ışığın hızı, tüm gözlemciler için aynıdır.
<span class="mw-page-title-main">Açısal momentum</span> Fiziksel nicelik

Açısal momentum, herhangi bir cismin dönüş hareketine devam etme isteğinin bir göstergesidir ve bu nicelik cismin kütlesine, şekline ve hızına bağlıdır. Açısal momentum bir vektör birimidir ve cismin belirli eksenler üzerinde sahip olduğu dönüş eylemsizliği ile dönüş hızını ifade eder.

<span class="mw-page-title-main">Dalga fonksiyonu</span>

Kuantum fiziğinde dalga fonksiyonu izole bir kuantum sistemindeki kuantum durumunu betimler. Dalga fonksiyonu karmaşık değerli bir olasılık genliğidir ve sistem üzerindeki olası ölçümlerin olasılıklarının bulunmasını sağlar. Dalga fonksiyonu için en sık kullanılan sembol Yunan psi harfidir ψ ve Ψ.

Fizikte ve matematikte, matematikçi Hermann Minkowski anısına adlandırılan Minkowski uzayı veya Minkowski uzayzamanı, Einstein'ın özel görelilik kuramının en uygun biçimde gösterimlendiği matematiksel yapıdır. Bu yapıda, bilinen üç uzay boyutu tek bir zaman boyutuyla birleştirilerek, uzay zamanını betimlemek için dört boyutlu bir çokkatlı oluşturulmuştur.

<span class="mw-page-title-main">Alan (fizik)</span>

Alan, fizik kuramlarında kullanılan, matematikteki cebirsel alanın tüm özelliklerini taşıyan terim. Genellikle bu etki 100 nanometre ve daha küçük skalalarda etkili olur. Bu etki nanoteknolojiyle aynı ölçeğe denk gelir. Bir alan mekan ve zaman içinde her bir nokta için bir değeri olan bir fiziksel miktardır. Örneğin, hava durumu, rüzgâr hızı uzayda her nokta için bir vektör atayarak tarif edilmektedir. Her bir vektör bu noktada hava hareketinin hızını ve yönünü temsil eder.

Fizikte bakışım, fizik sistemi betimleyen temel değişmezlik'lerle ilgilidir. Fiziksel sistem matematik modeller kullanılarak betimlenir ve modellerden en başarılı olanı kuram statüsüne ulaşır. Fizikte ve diğer bilimlerde modelin başarısı modelin öngörü üretebilme kapasitesiyle ve bu öngörülerin deneylerle doğrulanmasıyla ölçülür. Çoğu zaman fizik modelin değişik matematik dönüşüm'ler altında nasıl davrandığı incelenir. Eğer bir matematik dönüşüm sonucunda modelin betimlediği fizik sistem değişmiyorsa o dönüşümle ilgili bir bakışım (symmetry) olduğu söylenir. Modellerin doğrulukları deneylerden önce bu şekilde test edilir. Eğer fizik modeli daha karmaşık sistemleri betimliyorsa ya da kuantum fiziğinde olduğu gibi doğrudan gözlem yapamıyacağımız nicelikleri açıklayabilmek için geliştirilmiş ise bu karmaşık modelin içinde matematiksel olarak var olan bakışımların ortaya çıkması zaman alır ve kuramsal fizikçiler önce bu bakışımları ortaya çıkarmaya çalışırlar. Karmaşık modelin daha önce fark edilmeyen bir bakışımı bulunduğunda yeni bir korunum kanunu öngörülüyor demektir. Bazen yeni bakışımlar yeni parçacıkların varlığına işaret eder. Grup kuramı bakışımları sistematik ve matematiksel olarak inceler.

<span class="mw-page-title-main">Hız</span> vektörel bir fiziksel nicelik

Hız, bir nesnenin hareket yönü ile birlikte olan süratini ifade eder. Hız, cisimlerin hareketini tanımlayan bir klasik mekanik dalı olan kinematikte temel bir kavramdır.

<span class="mw-page-title-main">Ayar teorisi</span> Fizikte bir teori

Ayar teorisi veya ayar kuramı, kuramsal fizikte temel etileşmeleri açıklar. Türkçede bazen yerelleştirilmiş bakışım kuramı olarak da geçer.

Fizikte, Lorentz dönüşümü adını Hollandalı fizikçi Hendrik Lorentz'den almıştır. Lorentz ve diğerlerinin referans çerçevesinden bağımsız ışık hızının nasıl gözlemleneceğini açıklama ve elektromanyetizma yasalarının simetrisini anlama girişimlerinin sonucudur. Lorentz dönüşümü, özel görelilik ile uyum içerisindedir. Ancak özel görelilikten daha önce ortaya atılmıştır.

Fizikte ve matematik'te, Poincaré grubu,Henri Poincaré adına ithaf edilmiştir,Minkowski uzayzaman'ın izometri grubu'dur ."Uzay ve zaman"ı İlk kez Minkowski 1908'de derste kullanılmıştır.

Fizikte konuşlanma sistemi farklı zaman dilimlerinde nesnelerin konum ve yönelim gibi özelliklerini belirlemek ve ölçmek için kullanılan bir koordinat sistemini ifade etmektedir. Ayrıca bu özelliklerin temsilinde kullanılan kümelerini de içerebilmektedir. Daha zayıf bir anlamda, bir konuşlanma sistemi yalnızca koordinatları betimlememektedir, aynı zamanda bu sistemde hareket eden nesnelerin ayırt edilmesinde her zaman dilimi için aynı üç boyutlu alanları da tanımlamaktadır.

<span class="mw-page-title-main">Kütleçekimsel elektromanyetizma</span>

Kütleçekimsel Elektromanyetizm, kısaltılmışı KEM, elektromanyetizm ve göreli kütleçekimi arasındaki eşitliklerin benzeşiklerinden oluşan bir settir; Özellikle: Maxwell'in alan eşitliği ve yakınsaması ve bazı durumlarda Einstein'ın genel göreliliğindeki alan eşitliklerinden bulunabilir. Kütleçekimsel manyetizm genelde özellikle kütleçekiminin kinetik etkilerini belirtmek için kullanılır, hareketli elektrik yükünün manyetik etkilerinin benzeşiğidir. KEM, yalıtılmış sistemlerden uzakta olduğunda ve yavaş hareket eden deney parçacıklarında daha geçerli ve doğrudur. 1893'te ilk kez genel görelilikten önce, Oliver Heaviside tarafından yayınlandığından beri benzeşiğinde ve eşitliklerinde çok az değişiklik olmuştur.

18. yy. ve sonrasında geliştirilmiş, genellikle vektörel mekanik olarak nitelendirilen ve orijinalinde Newton mekaniği olarak bilinen analitik mekanik, klasik mekaniğin matematiksel fizik kaynaklarıdır. Model harekete göre analitik mekanik, Newton’un vektörel enerjisinin yerine, hareketin iki skaler özelliği olan kinetik enerjiyi ve potansiyel enerjiyi kullanır. Bir vektör, yön ve nicelik ile temsil edilirken bir skaler, nicelik ile(yoğunluğu belirtirken) temsil edilir. Özellikle Lagrange mekaniği ve Hamilton mekaniği gibi analitik mekanik de, sorunları çözmek için bir sistemin kısıtlamalarının ve tamamlayıcı yollarının kavramını kullanarak klasik mekaniğin kullanım alanını etkili bir şekilde yapılandırır. Schrödinger, Dirac, Heisenberg ve Feynman gibi kuram fizikçileri bu kavramları kullanarak kuantum fiziğini ve onun alt başlığı olan kuantum alan teorisini geliştirdiler. Uygulamalar ve eklemelerle, Einstein’a ait kaos teorisine ve izafiyet teorisine ulaşmışlardır. Analitik mekaniğin çok bilindik bir sonucu, modern teorik fiziğin çoğunu kaplayan Noether teoremidir.

<span class="mw-page-title-main">Van Stockum tozu</span>

Genel görelilikte, Van Stockum tozu Einstein alan denklemlerinin silindirik simetri ekseni etrafında dönen tozun oluşturduğu yer çekimi alanı için kesin sonucudur. Tozun yoğunluğu eksenin uzaklığıyla beraber arttığı için çözüm oldukça yapay olmakla kalmaz, aynı zamanda genel görelilikteki bilinen en basit çözümlerden olmakla beraber aynı zamanda Pedagojik olarak önemli örneklerden biri olarak gösterilir.

<span class="mw-page-title-main">Stres-enerji tensörü</span>

Stres-enerji tensörü, fizikte uzayzaman içerisinde enerji ve momentumun özkütle ve akısını açıklayan, Newton fiziğindeki stres tensörünü genelleyen bir tensördür. Bu, maddedinin, radyasyonun ve kütleçekimsel olmayan kuvvet alanının bir özelliğidir. Stres-enerji tensörü, genel göreliliğin Einstein alan denklemlerindeki yerçekimi alanının kaynağıdır, tıpkı kütle özkütlesinin Newton yerçekiminde bu tip bir alanın kaynağı olması gibi.

<span class="mw-page-title-main">Sabit bir eksen etrafında dönme</span> dönme hareketinin özel bir durumu

Sabit bir eksen etrafında dönme dönme hareketinin özel bir durumudur. Sabit eksen hipotez yönünü değiştirerek bir eksen olasılığını dışlar ve salınım devinim gibi olguları tarif edemez. Euler’in dönme teoremine göre, Aynı zamanda, sabit eksenler boyunca eş zamanlı rotasyon imkânsızdır. Eğer iki rotasyona aynı anda kuvvet uygulanırsa, rotasyonun yeni ekseni oluşur.

Fizikte, hayat çizgisi bir objenin 4 boyutlu uzayda işlediği yola denir. Objenin geçmiş mekanını her an takip etmeye de bu ad verilir. Hayat çizgisi yörüngeden ayrı bir kavramdır. Bu kavramlar zaman boyutuyla ayrılır. Ve genelde yörüngelerden daha geniş bir alanı temsil ederler, diğerlerine oranla özel göreliliğin gerçek doğasını ortaya çıkarırlar. Bu fikir Hermann Minkowski tarafından ortaya atılmıştır.Bu terim, genelde Görelilik Teorisinde kullanılır.

<span class="mw-page-title-main">Durgun kütle</span>

Değişmez kütle, durgun kütle, gerçek kütle, tam kütle ya da sınır sistemleri durumunda basitce kütle, bir objenin veya Lorentz dönüşümlerine göre tüm referans çerçevelerinde aynı olan objelerin sisteminin toplam enerji ve momentum karakteridir. Eğer momentum çerçevesinin bir merkezi sistemde oluşuyorsa, sistemin değişmez kütlesi toplam enerjinin ışık hızının karesine bölümüyle bulunur. Diğer referans çerçevelerinde, sistemin enerjisi artar yalnız sistemin momentumu bundan çıkarılmıştır, yani değişmez kütle aynı kalır.

<span class="mw-page-title-main">Matematikte simetri</span> matematikte simetri kavramı

Simetri yalnızca geometride değil, matematiğin diğer dallarında da ortaya çıkar. Simetri bir tür değişmezliktir: matematiksel bir nesnenin bir dizi işlem veya dönüşüm altında değişmeden kaldığı özelliktir.

Fizikte, özellikle çokludoğrusal cebir ve tensör analizinde, kovaryans ve kontravaryans belirli geometrik veya fiziksel varlıkların nicel tanımının temelin değişmesiyle nasıl değiştiğini açıklar. Modern matematiksel gösterimde bu roller bazen yer değiştirir.