İçeriğe atla

Silindirik ve küresel koordinatlarda del

Bu liste eğrisel koordinat sistemleri ile çalışılırken genel olarak kullanılan vektör hesabı formüllerinin bir listesidir.

Not

  • Bu sayfada standart fizik gösterim kullanır. küresel koordinatlar için, θ açısı yarıçap vektörünün z ekseni ile olan açısıdır ve Söz konusu noktaya orijinden bağlanır. ϕ açısı yarıçap vektörünün x-y yüzeyine izdüşümü ile ve x ekseni ile olan açıdır. Bazı kaynaklar θ ve ϕ yi ters tanıtırlar, bu anlam bağlamında böyle bir bağlantı kurulmamalıdır.
  • atan2(y, x) fonsiyonu kendi etki ve görüntü nedeniyle matematiksel fonksiyon arctan(y/x) yerine kullanılabilir, klasik arctan(y/x) görüntüsü (-π/2, +π/2)aralığında idi, buradaki atan2(y, x) (-π, π] aralığındadır. (Küresel koordinatlarda Del için ifadelerin düzeltilmesi gerekebilir)
  • Dönüşümler kartezyen koordinatlardan silindirik ve küreseledir.
del operatörü ile Silindirik küresel ve parabolik silindirik koordinatlar tablosu
işlem Kartezyen koordinatlar (x,y,z) Silindirik koordinatlar (ρ,φ,z) Küresel koordinatlar (r,θ,φ) Parabolik silindrik koordinatlar (σ,τ,z)
Koordinat Tanımları
Birim Vektölerin Tanımları
Bir vektör alanı
Gradyan

Diverjans

Curl
Laplace işlemcisi
Vektör Laplasyeni
Malzeme türevi[1]

Diferansiyel yer değiştirme
Diferansiyel yüzey normali
Diferansiyel hacim
önemli birtakım hesaplama kuralları:
  1. (Laplasyen)
  2. (Vektör çarpımı için Lagrange formülünü kullanarak)

Ayrıca bakınız

Kaynakça

  1. ^ Weisstein, Eric W. "Convective Operator". Mathworld. 3 Mart 2016 tarihinde kaynağından arşivlendi. Erişim tarihi: 23 Mart 2011. 

Dış bağlantılar

İlgili Araştırma Makaleleri

Laplasyen , skaler bir alanının gradyanı alınarak elde edilen vektörün diverjansıdır. Fizikteki birçok diferansiyel denklem laplasyen içerir.

<span class="mw-page-title-main">Küresel koordinat sistemi</span>

Küresel koordinat sistemi, üç boyutlu uzayda nokta belirtmenin bir yoludur.

Koordinat sistemi, geometride herhangi bir düzlemdeki (çokkatlıdaki) bir nokta veya başka bir geometrik elemanın konumunu tam olarak belirlemek için bir veya daha çok sayı ya da koordinat kullanılan bir sistemdir. Koordinatlar basit matematikteki reel sayılardan oluşur. Fakat soyut cebir gibi bazı alanlarda karmaşık sayılar veya elemanlardan oluşabilir. Koordinat sisteminin kullanılması, geometrik problemlerin sayısal problemlere ve tersine dönüştürülmesini sağlar. Bu analitik geometrinin temelidir.

<span class="mw-page-title-main">Kutupsal koordinat sistemi</span>

Matematikte kutupsal koordinat sistemi veya polar koordinat sistemi, noktaların birer açı ve Kartezyen koordinat sistemindeki orijinin eşdeğeri olup "kutup" olarak bilinen bir merkez noktaya olan uzaklıklar ile tanımlandığı, iki boyutlu bir koordinat sistemidir. Kutupsal koordinat sistemi, matematik, fizik, mühendislik, denizcilik, robot teknolojisi gibi birçok alanda kullanılır. Bu sistem, iki nokta arasındaki ilişkinin açı ve uzaklık ile daha kolay ifade edilebildiği durumlar için özellikle kullanışlıdır. Kartezyen koordinat sisteminde, böyle bir ilişki ancak trigonometrik formüller ile bulunabilir. Kutupsal denklemler, çoğu eğri tipi için en kolay, bazıları içinse yegâne tanımlama yöntemidir.

Matematikte karmaşık sayı, bir gerçel bir de sanal kısımdan oluşan bir nesnedir. a ve b sayıları gerçek olursa karmaşık sayılar şu biçimde gösterilirler:

<span class="mw-page-title-main">Yarıçap</span> merkezinden çevresine bir daire veya küre içinde bölüm veya yüzeyi ile uzunluğu

Yarıçap, bir daire veya kürenin özeğinin (merkezinin) çemberine olan mesafesidir. Çapın yarısına eşittir.

<span class="mw-page-title-main">Logaritmik spiral</span>

Logaritmik spiral, doğada sık rastlanan bir spiral çeşididir. İlk olarak 17. yüzyılda René Descartes ve Jakob Bernoulli tarafından tanımlanmış ve incelenmiştir. Bernoulli bu eğriye, kendine özgü matematiksel özelliklerinden dolayı, spira mirabilis adını vermiş ve mezar taşına bir logaritmik spiral oyulmasını vasiyet etmiştir.

<span class="mw-page-title-main">Laplace denklemi</span>

Matematikte Laplace denklemi, özellikleri ilk defa Pierre-Simon Laplace tarafından çalışılmış bir kısmi diferansiyel denklemdir. Laplace denkleminin çözümleri, elektromanyetizma, astronomi ve akışkanlar dinamiği gibi birçok bilim alanında önemlidir çünkü çözümler bilhassa elektrik ve yerçekim potansiyeli ile akışkan potansiyelinin davranışını açıklar. Laplace denkleminin çözümlerinin genel teorisi aynı zamanda potansiyel teorisi olarak da bilinmektedir.

Görüntü yük yöntemi, elektrostatikte kullanılan bir soru çözüm tekniğidir. İsimlendirmenin kökeni problemdeki sınır koşullarını bazı sanal yükler ile değiştirme yönteminden gelir.

Sıkışabilir akışkan bir ortamda yol alan herhangi bir araç ya da gövde ye ait burun konisi kısmının aerodinamik tasarımındaki, önemli bir problem burun konisinin geometrik şeklinin belirlenmesidir. Burun konisinin şekli optimum performans için gereklidir. Dönel katı cisim şekil tanımlamasının gerektiği işler gibi birçok uygulamalar, akışkan bir ortamda çok hızlı hareket eden böyle bir cismin karşılaşacağı direncin en aza indirilmesini gerektirir.

Burada, en yaygın olarak kullanılan koordinat dönüşümü bazılarının bir listesi verilmiştir. Kısmi türevler alınırken çarpımın türevi gibi davranıldığı akıldan çıkarılmamalıdır. Bir örnek olarak fonksiyonunda üç çarpım vardır

Değişken değiştirme, İntegral, çarpanlara ayırma, denklemler, üslü denklemler, trigonometri ve diferansiyel denklemler başta olmak üzere matematiğin her alanında işlemi basitleştirmek için kullanılan matematiksel bir yöntemdir.

Matematikte ters trigonometrik fonksiyonlar, tanım kümesinde bulunan trigonometrik fonksiyonların ters fonksiyonudur.

<span class="mw-page-title-main">Silindirik ve küresel koordinatlarda vektör alanı</span>

NOT: Bu sayfa küresel koordinatların fizik gösterimi içindir, z ekseni arasındaki açıdır.ve yarıçap vektörü söz konusu noktaya orijinden bağlantılıdır, bu açısı x-y düzlemi ve x ekseni ile vektör yarıçapının izdüşümü arası açıdır. Diğer bazı tanımları da kullanılıyor ve çok dikkatli farklı kaynaklardan karşılaştırarak alınmalıdır.

<span class="mw-page-title-main">Küresel harmonikler</span>

Matematikte, küresel harmonikler Laplace denkleminin çözüm kümesinin açısal kısmıdır. Küresel koordinatların bir sistemi içinde küre yüzeyinde tanımlanır, Fourier serisi ise çember üzerinde tanımlanır. Laplace'ın küresel harmonikleri Pierre Simon de Laplace tarafından ilk 1782 yılında tanıtılan bir ortogonal sistemin küresel harmonik formlarının özel bir kümesidir. Küresel harmoniklerden birkaçının kökleri sağda gösterimlenmiştir. Küresel harmonikler pek çok yerde teorik önem taşımaktadır ve özellikle atomik yörünge elektron konfigürasyonları, yerçekimi alanları, geoitleri ve gezegen ve yıldızların manyetik alanlarının temsili ve kozmik mikrodalga arka plan radyasyonu karakterizasyonu hesaplanmasında kullanılan pratik uygulamaları vardır. Küresel harmonikler 3D Bilgisayar grafiklerinde, dolaylı aydınlatma ve 3D şekillerin tanınması gibi konularda geniş bir yelpazede özel bir rol oynamaktadır.

Fizikte,düzlem dalga açılımı küresel dalgaların bir toplamı olarak bir düzlem dalgayı ifade eder,

Fizikte, dairesel hareket bir nesnenin dairesel bir yörünge boyunca bir rotasyon ya da çemberin çevresinde yaptığı harekettir. Rotasyonun sürekli açısal değeriyle birlikte düzgün ya da değişen rotasyon değeriyle düzensiz olabilir. 3 boyutlu bir cismin sabit ekseni etrafındaki rotasyon parçalarının dairesel hareketini içerir. Hareketin denkliği bir cisim kütlesinin merkezini tanımlar.

Matematikte, uzunluğu 1 olan ve uzayda bir norma sahip olan vektöre birim vektör denir. Birim vektör genellikle ‘û‘ gibi şapkalı ve küçük harflerle ifade edilir. Normalize vektör veya versor olmayan bir sıfır vektörü u ile eş yönlü olan birim vektörü u

<span class="mw-page-title-main">Hacim integrali</span>

Hacim integrali çok değişkenli kalkülüsteki çokkatlı integralin 3 boyutlu durumudur. Hacim integrali fizikte önemli bir yere sahiptir. Özellikle yoğunlukların hesabı için kullanılır.

Trigonometrik fonksiyonları tanımlamanın birkaç eşdeğer yolu vardır ve bunlar arasındaki trigonometrik özdeşliklerin kanıtları seçilen tanıma bağlıdır. En eski ve en temel tanımlar dik üçgenlerin geometrisine ve kenarları arasındaki orana dayanır. Bu makalede verilen kanıtlar bu tanımları kullanır ve dolayısıyla bir dik açıdan büyük olmayan negatif olmayan açılar için geçerlidir. Daha büyük ve negatif açılar için Trigonometrik fonksiyonlar bölümüne bakınız.