İçeriğe atla

Siderofor

Siderofor (Yunanca demir taşıyıcı), mikroorganizmalar, pek çok bitki ve bazı yüksek organizmalar tarafından salgılanan, demir şelasyonu yapan bileşiklerdir.[1][2] Demir Fe3+ iyonlarının nötral pH'de çözünürlükleri çok düşüktür ve dolayısıyla organizmalar tarafından kullanılamaz. Sideroforlar şelasyon yoluyla bu iyonların çözelmesini sağlar. Bu çözelmiş kompleksler aktif taşıma ile hücre içine alınırlar. Çoğu siderofor, nonribozomal peptittir.

Şelasyon

Anoksik şartlarda demir genelde +2 yükseltgenme halindedir ve suda çözünür. Ancak, oksik şartlarda, demir genelde +3 yükseltgenme halinde olur ve çeşitli suda çözünmez mineraller oluşturur. Bu tür minerallerden demir elde edebilmek için hücreler demire bağlanan ve onu hücre içine taşıyan sideroforlar üretirler. Sideroforların başlıca gruplarından biri, hidroksamik asit türevleridir, bunlar ferrik iyonları kuvvetle şelatlar.[3]

Altı dişli (İng. hexadentate) yapılar sideroforlarda çok yaygın görülür. Bunun nedeni, Fe-III iyonları için üç dişli ligandlara gerek olması ve bunlardan ikisinin aynı moleküle dahil edilmesidir. En etkili sideroforlarda birden çok ligand bulunur. Bu sayede ferrik iyonunun tam oktahedral kordinasyonu mümkün olur ve tek bir ferrik iyonun ayrı ligandlar tarafından şelasyonundan kaynaklanan entropi etkileri minimize olur.

Çeşitli bakteri ve mantarlar tarafından üretilen sideroforlara örnek olarak ferrikrom (Ustilago sphaerogena), enterobaktin (veya enteroşelin) (Escherichia coli), mikobaktin (Mycobacterium), enterobactin ve basillibaktin (Bacillus subtilis), ferrioksamin B (Streptomyces pilosus), fusarinine C (Fusarium roseum), yersiniabaktin (Yersinia pestis), vibriobaktin (Vibrio cholerae), azotobaktin (Azotobacter vinelandii), psödobaktin (Pseudomonas B 10), eritrobaktin (Saccharopolyspora erythraea) ve ornibaktin (Burkholderia cepacia) sayılabilir.

Sideroforlar tarafından şelatlanan diğer metaller şunlardır: Aluminyum,[1][4][5]Galyum,[1][4][5]Krom,[4][5]Bakır,[4][5]Çinko,[4] |Kurşun,[4]Manganez,[4]Kadmiyum,[4]Vanadyum,[4] Indiyum,[4] Plutonyum,[6]Uranyum[6]

Biyolojik işlev

Ortamda demir sınırlanmasına tepki olarak mikroplarda siderofor üretimi üzerindeki baskılama kalkar. Bunun ardından hücre dışına siderofor salgılanır. Hücre dışında siderofor demiri kavrar ve onu çözeltir.[7][8] Sideroforlar demir ile oktahedral bir siderofor-demir kompleksi oluşturarak ona kuvvetli bir şekilde bağlanırlar. Sideroforlar sonra özgül reseptörler tarafından tanınırlar.[1][4] Bu reseptörlere bağlanmanın ardından sideroforlar hücre zarının içinden çeşitli mekanizmalar ile taşınırlar[1][8] Demir (III)'ün hücre içinde indirgenmesinin ardından oluşan Fe(II)'nin sıderoforla göreli zayıf kompleksleşmesi, demirin hücre içine salınması için verimli bir yol sağlar. Sideroforun parçalanması ve başka biyolojik mekanizmalarla da demir serbest kalabilir.[8] Siderofordan elde edilen demir, elektron taşıması, oksijen taşıması ve yaşam için önemli başka süreçlerde yer alan enzimlerin işlevi için gereklidir.

Bakteriler ve konakları demiri bağlamak için yapısal olarak birbirinden farklı sideroforlar kullanarak birbirleriyle yarışırlar.[2] Hayvanlar da, vücutları içinde bakterilerin çoğalmasını engellemek için serbest demir bulundurmazlar, örneğin plazmada demir transferin tarafından tutulmuştur, vücuttaki diğer sıvılarda bulunan laktoferin de aynı işleve sahiptir. Bakteriler konak organizmalardan demir elde etmek için çeşitli mekanizmalar evrimleştirmiştir, sideroforlar bunlardan biridir. Bazı bakterilerin salgıladığı sideroforların demire bağlanma afinitesi (bağlanma eğilimi) o kadar kuvvetlidir ki, transferin veya laktoferinden ayrışan demir iyonları tekrar geri bağlanamadan bu sideroforlar tarafından kapılırlar.[9] Sideroforlar bazı bakterilerin hastalık yapma yeteneği için gereklidir, dolayısıyla bunlar virülans faktörü olarak sayılır.[9]

Pseudomonas sideroforları

Diğer aerobik bakteriler gibi psödomonadlar da demir elde etmek için demir (III) ile yüksek affinite ile kompleksleşen sideroforlar salgılarlar. Flüoresan pseudomonadlar (Pseudomonas aeruginosa gibi) yüksek affiniteli peptidik bir siderofor olan piyoverdin üretirler, ama çoğu zaman buna ilaveten daha düşük afiniteli ikinci bir siderofor daha salgılarlar. Bu sideroforların sentezini ve hücre içine alımından sorumlu genlerin bir kısmı ve bunların kodladığı proteinlerin işlevleri bilinmektedir. Siderofor yoluyla demir alımı birkaç seviyede düzenlenmektedir. Bunlara örnek olarak, demire-duyarlı represör Fur (İng. Ferric Uptake Regulator den kısaltma), sitoplazma dışı sigma ve anti-sigma faktörleri ve başka düzenleyiciler sayılabilir. Pseudomonadlar doğada çok yaygın bulundukları için hücre içine demir sideroforu ve hem alınmasında görev alan reseptörleri kodlayan çok sayıda gene sahiptirler. Demir regulonu ile diğer düzenleyici şebekeler arasında iletişim vardır.

Tıbbi uygulamalar

Sideriforların demir veya alüminyum birikimi terapisinde ve hedeflenmiş antibiyotik terapisinde uygulamaları vardır.[4] Vücutta sınırlı miktarda demir bulunan ortamlarda bakterilerin büyümesini engellemek için siderofor biyosentezini bloke edecek inhibitör ilaçlar geliştirilmiştir.[10]

Sideroforlar insanlarda demir kullanımını kolaylaştırmak amaçlı ilaçlar olarak da kullanılırlar.[11] Bir diğer uygulama, sideroforların demir taşıma yeteneğinden yararlanarak bakteri hücrelerinin içine ilaç taşınmasını sağlamaktadır. Bir uygulamada siderofor ile bir ilaç birleştirilir, bakteri ancak kendine has sideroforları içine aldığı için bu bileşiklerin seçici antimikrobiyal etkisi olur.[1][2]

Tarımsal uygulamalar

Bitki köklerinin çevresindeki (rizosferdeki) mikroorganizmalar tarafından üretilen kimyasal bileşikler demir gibi bazı gerekli minerallerin varlığını ve alımını artırırlar. Rizosferik bakteriler tarafından üretilen hidroksamat türü sideroforları (ferrikrom, rodotorulik asit ve ferrioksamin B), katekol tipi sideroforları (agrobaktin) ve karışık ligandlı katekol-hidroksamat-hidroksi asit sideroforların bitkiler tarafından kullanıldığı gösterilmiştir. Bu saprofit bakteriler toprakta, yapraklarda, su birikintilerinde, deniz suyunda ve tortuda bulunur.[5]

Flüoresan pseudomonadlar bazı bitki patojenlerine karşı biyolojik mücadele etmeni olarak kullanılabilecekleri bulunmuştur. Bunların salgıladığı piyoverdin adlı sarı-yeşil pigmentler siderofor olarak işlev görür. Bu bileşikler patojenleri gerek duydukları demirden mahrum bırakır.[12]

İlgili süreçler

Demir çözünürlüğünü artırmanın ve onu hücre içine almanın diğer stratejileri, çevrenin asitleştirilmesi (bitki kökleri tarafından kullanılır) veya Fe3+'ün daha çözünür olan Fe2+ iyonlarına hücre dışında indirgenmesidir. Demir alımı için alternatif yöntemler olarak, yüzeyde indirgeme, pH azaltması, hem kullanımı veya protein komplekslenmiş metalin ekstraksiyonu sayılabilir.[1]

Kaynakça

  1. ^ a b c d e f g J. B. Neilands. Siderophores: Structure and Function of Microbial Iron Transport Compounds. J. Biol. Chem., Nov 1995; 270: 26723 - 26726.
  2. ^ a b c Miller, Marvin J. Siderophores (microbial iron chelators) and siderophore-drug conjugates (new methods for microbially selective drug delivery). University of Notre Dame, 4/21/2008 http://www.nd.edu/~mmiller1/page2.html 20 Aralık 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  3. ^ Biology of Microorganisms, 11. baskı, Pearson Education
  4. ^ a b c d e f g h i j k l A. del Olmo, C. Caramelo, and C. SanJose. Fluorescent complex of pyoverdin with aluminum. Journal of Inorganic Biochemistry, 2003; 97: 384-387.
  5. ^ a b c d e G. Carrillo-Castañeda, J. Juárez Muños, J. R. Peralta-Videa, E. Gomez, K. J. Tiemannb, M. Duarte-Gardea and J. L. Gardea-Torresdey. Alfalfa growth promotion by bacteria grown under iron limiting conditions. Advances in Environmental Research, 2002; 6: 391–399.
  6. ^ a b John, Seth G., Ruggiero, Christy E., Hersman, Larry E., Tung, Chang-Shung., and Neu, Mary P. Siderophore Mediated Plutonium Accumulation by Microbacterium flavescens (JG-9). Environ. Sci. Technol. 2001, 35, 2942-2948.
  7. ^ Huyer, Marianne, and Page, William J. Zn2+ Increases Siderophore Production in Azotobacter vinelandii . Applied and Environmental Microbiology, Nov. 1988; 54: 2625-2631.
  8. ^ a b c John M. Roosenberg II, Yun-Ming Lin, Yong Lu and Marvin J. Miller. Studies and Syntheses of Siderophores, Microbial Iron Chelators, and Analogs as Potential Drug Delivery Agents. Current Medicinal Chemistry, 2000; 7: 159-197.
  9. ^ a b Baron, Samuel (1996). http://www.ncbi.nlm.nih.gov/books/bv.fcgi?highlight=siderophore&rid=mmed.section.573#575 |bölümurl= eksik başlık (yardım). Medical Microbiology. Galveston, Teksas: The University of Texas Medical Branch at Galveston. 12 Mayıs 2009 tarihinde kaynağından arşivlendi. Erişim tarihi: 30 Eylül 2008. 
  10. ^ Julian A Ferreras, Jae-Sang Ryu, Federico Di Lello, Derek S Tanand Luis E N Quadri. Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nature Chemical Biology, 2005; 1: 29-32.
  11. ^ M. Alexandra Esteves, M. Candida T. Vaz, M. L. S. Simoes Goncalves, Etelka Farkas, and M. Amelia Santos. Siderophore Analogues. Synthesis and Chelating Properties of a New Macrocyclic Trishydroxamate Ligand. J. Chem. Soc., Dalton Trans., 1995; 2565 – 2573.
  12. ^ K. S. Jagadeesh, J. H. Kulkarni and P. U. Krishnaraj. Evaluation of the role of fluorescent siderophore in the biological control of bacterial wilt in tomato using Tn5 mutants of fluorescent Pseudomonas sp. Current Science, 25 Oct. 2001; 81: 882.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Biyoloji</span> canlıları inceleyen bilim dalı

Biyoloji ya da dirim bilimi, yaşamın bilimsel olarak incelenmesidir. Geniş bir kapsama sahip bir doğa bilimidir ancak onu tek ve tutarlı bir alan olarak birbirine bağlayan birkaç birleştirici teması vardır. Örneğin, tüm organizmalar, gelecek nesillere aktarılabilen genlerde kodlanmış kalıtsal bilgileri işleyen hücrelerden oluşur. Bir diğer ana tema ise yaşamın birliğini ve çeşitliliğini açıklayan evrimdir. Enerji işleme, organizmaların hareket etmesine, büyümesine ve çoğalmasına izin verdiği için yaşam için de önemlidir. Son olarak, tüm organizmalar kendi iç ortamlarını düzenleyebilmektedir.

<span class="mw-page-title-main">Bakteri</span> mikroorganizma üst âlemi

Bakteri (İngilizce telaffuz: [bækˈtɪəriə] ( dinle); tekil isim: bacterium), tek hücreli mikroorganizma grubudur. Tipik olarak birkaç mikrometre uzunluğunda olan bakterilerin çeşitli şekilleri vardır, kimi küresel, kimi spiral şekilli, kimi çubuksu, kimi virgül şeklinde olabilir. Yeryüzündeki her ortamda bakteriler mevcuttur. Toprakta, deniz suyunda, okyanusun derinliklerinde, yer kabuğunda, deride, hayvanların bağırsaklarında, asitli sıcak su kaynaklarında, radyoaktif atıklarda büyüyebilen tipleri vardır. Tipik olarak bir gram toprakta bulunan bakteri hücrelerinin sayısı 40 milyon, bir mililitre tatlı suda ise bir milyondur; toplu olarak dünyada beş nonilyon (5×1030) bakteri bulunmaktadır, bunlar dünyadaki biyokütlenin çoğunu oluşturur. Bakteriler gıdaların geri dönüşümü için hayati bir öneme sahiptirler ve gıda döngülerindeki çoğu önemli adım, atmosferden azot fiksasyonu gibi, bakterilere bağlıdır. Ancak bu bakterilerin çoğu henüz tanımlanmamıştır ve bakteri şubelerinin sadece yaklaşık yarısı laboratuvarda kültürlenebilen türlere sahiptir. Bakterilerin araştırıldığı bilim bakteriyolojidir, bu, mikrobiyolojinin bir dalıdır.

<i>Escherichia coli</i> enterik, çubuk şeklinde, gram-negatif bakteri

Escherichia coli (E.coli), Enterobacteriaceae familyasının bir üyesi olup memeli canlıların kalın bağırsağında yaşadığı için bu adı alan bir bakteri türüdür. E.coli çubuk şeklindedir ve gram negatif bakteri olduğundan endospor oluşturmaz. E. coli yaklaşık 2,0 μm uzunluğunda ve 0,5 μm çapındadır. E.coli ilk olarak 1885 yılında Theodor Escherich tarafından bebek dışkısından izole edilmiş ve özellikleri belirlenmiştir. "E. coli, doğumdan birkaç saat sonra bebeklerin mide ve bağırsak sisteminde kolonize olur ve burada yaşar." E.coli suşları insan vücudunda herhangi bir olumsuz etki olmaksızın bir arada bulunur. Bununla birlikte, E. coli gastrointestinal bariyerleri aşınmış ve/ya da bağışıklığı baskılanmış konakçılarda hastalığa neden olabilir. Özellikle bir kısım E. coli, dünya genelinde insanlarda ve hayvanlarda bağırsakta ve bağırsak dışında çeşitli hastalıklara aracılık eder. İnsanlardan izole edilen E. coli suşları ishale ve bir takım bağırsak dışı hastalıklara neden olmaktadır.

<span class="mw-page-title-main">Fagositoz</span>

Fagositoz, bir fagositin solid partikülleri yakalayıp yutması ve sitoplazmasında oluşturduğu fagosom adı verilen boşluğa hapsederek eritme (sindirme) çabasıdır. Fagosite ettikleri başlıca solid partiküller canlı etkenler (mikroplar), ölü hücre ve doku artıkları, suda erimeyen mineraller ve metal tuzları, yabancı cisimler vb. oluşumlardır. Fagositler ve fagositoz olgusu ilk kez 1882 yılında İlya İlyiç Meçnikov tarafında bulundu. Bu buluşu ona Nobel Fizyoloji veya Tıp Ödülünü kazandırdı.

<span class="mw-page-title-main">Şiga toksini</span> Bakteri toksini

Şiga toksinleri, Shigella dysenteriae ve bazı Escherichia coli bakterileri tarafından salgılanan toksinlerdir, bunlar bakterinin içinde bulunan konak organizmada dizanteri meydana getirirler. Bu toksinler evrimsel olarak birbirine akraba bir toksin ailesidir, Stx1 ve Stx2 olarak adlandırılan iki ana gruptan oluşur. Bu toksinlerin genleri, bakteriyi enfekte etmiş bir virüs olan, lambda-tipi profajların genomunda yer alır. Şiga toksinleri, Shigella dysenteriae'nın neden olduğu dizanterinin bakteriyel kaynağını tanımlamış olan Kiyoşi Şiga'ya atfen adlandırılmışlardır. Şiga toksini, Shigella dysenteriae'nin yanı sıra E. coli'nin O157:H7 serotipi ve diğer bağırsak kanatıcı (enterohemorajik) E. coli'ler de bu toksinleri salgılar. E. coli'nin salgıladığı Stx1 toksini baştan Vero toksin veya Şiga benzeri toksin olarak adlandırılmış ancak daha sonra bu toksinin S. dysenteriae'nın salgıladığı Şiga toksinleri ile hemen hemen aynı olduğu gösterilmiştir.

Bağırsak florası sindirim sisteminde yaşayıp konak organizmanın sindirimiyle ilgili çeşitli yararlı işlevler gören mikroorganizmalardır.

<span class="mw-page-title-main">Proteobakteriler</span>

Proteobakteriler (Proteobacteria), bakteriler üstaleminin ana gruplarından birisini meydana getiren ve önemli cins ve türleri içeren şubesidir. Çeşitli hastalık etmenleri ve başka çok bilinen cinsler bu gruba dahildir. Ayrıca doğada serbest yaşayan türleri ve azot fiksasyonundan sorumlu pek çok bakteri türünü de içerir. Bu grup ribozomal RNA (rRNA) dizinlerine göre tanımlanmıştır. Bakteri biçimlerinin çeşitliliğinden dolayı grup, ismini Yunan mitolojisinde yer alan, her şekle girebilen tanrı Proteus'tan almıştır.

<span class="mw-page-title-main">Arkea</span> aşırı şartlarda yaşayabilen mikroskobik canlılar

Arkeler, Arkea veya Arkebakteriler, canlı organizmaların bir ana bölümüdür.

<span class="mw-page-title-main">Pseudomonadaceae</span>

Pseudomonadaceae bakteriler âleminde bir familyadır, bu familyaya Azomonas, Azorhizophilus, Azotobacter, Entomomonas, Mesophilobacter, Oblitimonas, Permianibacter, Pseudomonas, Rugamonas ve Thiopseudomonas' cinsleri dahildir. Yakın zamanda Azotobakterilerin de bu familyaya ait olduğuna karar verilmiş, ve bu familya'ya ait olan ait olan Cellvibrio cinsi ayrı bir familya olarak ayrılmıştır.

Moleküler biyolojide transformasyon, bir hücrenin içine dışarıdan bir DNA parçasının girmesi ve hücrenin genomuyla bütünleşmesi sonucu hücrede gerçekleşen genetik değişikliğe denir. Hücre dışında bulunan serbest DNA parçaları ancak uygun haldeki bakteri, mantar, alg, maya ya da bitki hücrelerine girebilir. Doku kültüründeki ökaryotik hayvan hücrelerinde gerçekleşen transformasyona ise özel olarak transfeksiyon denir. Sıfat hali olarak, yani "transformasyona uğramış" anlamında, 'transforme' kelimesi kullanılır.

Endotoksinler bakteri gibi patojenlerin içinde bulunan, potansiyel olarak toksik olabilecek bileşiklerdir. Endotoksinler bakteri tarafından salgılanmazlar, ama bakterinin parçalanırsa ortama salınan, onun yapısal bir bileşenidirler. Endotoksinler ile enterotoksinler karıştırılmamalıdır.

<span class="mw-page-title-main">Şelatlama</span>

Şelasyon iki veya çok dişli bir kimyasal ligandın iyonik bir substrata bağlanması veya komplekslenmesidir. Bu ligandlar ki genelde organik bileşiklerdir, şelatör veya şelat ajanı olarak adlandırılır. Şelatörler, ASTM-A-380 standardına göre, "belli metal iyonları ile suda çözünür kompleksler oluşturan kimyasallardır, bu sayede iyonu etkinsizleştirerek onun başka elementler veya iyonlarla tepkitmeyerek, çökelek veya tortu oluşmamasını sağlar". Ligand, substrat ile birleşip bir şelat kompleksi meydana getirir. Bu terim, metal iyonunu şelatördeki iki veya daha çok atomla bağlandığı kompleksler için kullanılır. Literatürde metal iyonu tutan bağların sayısına değinmek için dişlilik terimi kullanılır, örneğin yandaki resimde görülen EDTA altı dişli bir şelatördür.

<span class="mw-page-title-main">Yeşil kükürt bakterileri</span>

Yeşil kükürt bakterileri, hareketsiz, anoksijenik, fotoototrofik bakterilerdir. Bu yüzden onlar filogenetik olarak farklı gruplandırılırlar.

<span class="mw-page-title-main">Denitrifikasyon</span>

Denitrifikasyon ya da nitrat solunumu, nitrat ve nitrit bileşiklerinin, anaerobik koşullarda mikroorganizmalar tarafından redüksiyona Uğratılarak elementer azota dönüştürülmesi olayı.

<span class="mw-page-title-main">G proteini kenetli reseptör</span> G-Proteini ile ilişkili hücre içi sinyalizasyona bağlı hücre yüzeyi reseptörleri sınıfı

G proteini kenetli reseptörler (GPCR) veya yedi transmembran parçalı yapıda olan reseptörler, geniş bir almaç ailesidir. Hücre dışı bileşikleri algılayarak hücre içi sinyal iletimi (transdüksiyon) yollarını etkinleştirirler. Hücre içinde G proteinlerine bağlanırlar. Hücre zarından kıvrılarak yedi kez geçtiklerinden "yedi transmembran parçalı" (7TM) adlandırmasına da sahiptirler.

<span class="mw-page-title-main">Alphaproteobacteria</span>

Alphaproteobacteria, Proteobacteria şubesinde bir bakteri sınıfıdır. Üyeleri son derece çeşitlidir ve çok az benzerliğe sahiptir ancak yine de ortak bir atadandırlar. Tüm Proteobakteriler gibi, üyeleri gram-negatiftir fakat bazı hücre içi parazit üyeleri peptidoglikandan yoksundur ve bu nedenle gram değişkendir.

Metal zehirlenmesi veya metal toksisitesi; belirli metallerin belirli biçim ve dozlarda yaşam üzerindeki zehirleyici etkisidir. Birtakım metaller, zehirli çözünür bileşikler oluşturduklarında zehirlidir. Birtakım metallerin biyolojik bir rolü yoktur, başka bir deyişle yaşam için zorunlu (esansiyel) minerallerden değildir veya belirli bir türevdeyken zehirlidir. Söz konusu metalin kurşun olması durumunda, kurşunun ölçülebilir herhangi bir miktarının sağlık üzerinde olumsuz etkileri olabilir. Metal zehirlenmesinin genellikle ağır metaller ile anlamdaş olduğu düşünülür, ancak berilyum ve lityum gibi daha hafif metaller de belirli durumlarda zehirli olabilir. Bütün ağır metaller özellikle zehirli değildir ve demir gibi bazı metaller canlıda çok önemli bir yer tutar. Metal zehirlenmesinin tanımı, anormal derecede yüksek dozlarda zehirli etki gösteren eser elementleri de kapsayabilir. Metal zehirlenmesinin tedavisi için şelasyon tedavisi bir seçenek olabilir; bu yöntem, metalleri vücuttan uzaklaştırmak için şelasyon ajanlarının uygulanmasını içine alan bir tekniktir.

Mikrobiyoloji, mikroorganizmaları inceleyen biyolojinin alt dallarından biridir. Mikro; gözle görülemeyecek kadar küçük, -biyo; canlı ve -loji; bilim anlamına gelmektedir. Mikrobiyoloji; mikroorganizmaların yapısı, çeşitliliği ve bunların toprak, su, bitki, gıda, hayvan ve insan vücudundaki faaliyetleriyle ilgilenmektedir.

<span class="mw-page-title-main">Rizobakteriler</span>

Rizobakteriler, birçok bitki ile simbiyotik ilişkiler oluşturan kökle ilişkili bakterilerdir. Adı, kök anlamına gelen Yunanca rhiza'dan gelmektedir. Rizobakterilerin parazitik çeşitleri mevcut olmasına rağmen, terim genellikle her iki taraf için de faydalı bir ilişki oluşturan bakterilere atıfta bulunmaktadır. Biyogübrede kullanılan önemli bir mikroorganizma grubudur. Biyo-gübreleme, dünya çapında mahsullere sağlanan azotun yaklaşık %65'ini oluşturmaktadır. Rizobakterilere genellikle bitki büyümesini teşvik eden rizobakteriler veya PGPR'ler denmektedir. PGPR terimi ilk olarak 1970'lerin sonlarında Joseph W. Kloepper tarafından kullanılmış ve bilimsel literatürde yaygın olarak kullanılmaya başlanmıştır. PGPR'lerin farklı konukçu bitki türleri ile farklı ilişkileri vardır. İki ana ilişki sınıfı rizosferik ve endofitiktir. Rizosferik ilişkiler, kökün yüzeyini kolonize eden PGPR'lerden veya konakçı bitkinin yüzeysel hücreler arası boşluklarından oluşmaktadır ve genellikle kök nodülleri oluşturmaktadır. Rizosferde bulunan baskın tür, Azospirillum cinsinden bir mikroptur. Endofitik ilişkiler, apoplastik uzayda konukçu bitki içinde yaşayan ve büyüyen PGPR'leri içermektedir.

İndol, C8H7N formülüne sahip aromatik bir heterosiklik organik bileşiktir. Beş üyeli bir pirol halkasına kaynaşmış altı üyeli bir benzen halkasından oluşan bisiklik bir yapıya sahiptir. İndol, doğal ortamda yaygın olarak bulunur ve çeşitli bakteriler tarafından üretilebilir. Hücreler arası bir sinyal molekülü olarak indol, spor oluşumu, plazmit stabilitesi, ilaçlara direnç, biyofilm oluşumu ve virülans dahil olmak üzere bakteri fizyolojisinin çeşitli yönlerini düzenler. Amino asit triptofan bir indol türevidir ve nörotransmiter serotoninin öncüsüdür.