İçeriğe atla

Serbest düşme

Bir elmanın serbest düşüşü

Klasik mekanikte serbest düşme, yerçekiminden başka bir kuvvetin etkilemediği bir fiziksel maddenin devinimine verilen addır. Genel görelilik bağlamında ise yerçekimi uzay-zaman boyutunda değerlendirildiğinden, üzerinde herhangi bir kuvvetin bulunmadığı devinim serbest düşme olarak adlandırılır. Başka bir kuvvetin mevcut olmadığı ortamlarda yerçekimi bir nesnenin her yanına eşit oranda etkir ve bu durum ağırlıksızlık olarak tanımlanır.

Newton fiziğinde, serbest düşüş sadece yerçekimi kuvvetinin etki ettiği cisim hareketi olarak tanımlanır. Genel görelelik şartlarında, çekim uzay-zaman eğriliğine indirgendiğinde, serbest düşüşte bir cisim üzerinde hiçbir kuvvet bulunmaz.

Bir cisim teknik açıdan bakıldığında "serbest düşüş" genel düşüncenin aksine yere düşüyor olmayabilir. Yukarı hareket eden bir cisim, eğer üzerinde sadece yerçekimi kuvveti etki ediyorsa, normal olarak düşüyor farz edilir. Bu nedenle, Ay serbest düşüştedir.

Kabaca yerçekimi alanı, diğer kuvvetlerin yokluğunda, yerçekimi her bir cisme yaklaşık olarak eşit davranır, böylece ağırlıksızlık hissine yol açar, ağırlıksızlık yerçekimi alanının zayıf olduğunda (örnek olarak yerçekimi kaynağından yeterince uzak bir konumda) yaşanan bir durumdur.

"Serbest düşüş" tabiri genelde yukarıdaki katı tabirden daha serbest kullanılır. Bu nedenle, açılmış bir paraşüt olmadan atmosferden düşmek, veyahut uçan bir araçtan, serbest düşüş olarak değerlendirilir. Aerodinamik sürükleme kuvvetleri böyle durumlarda tamamıyla ağırlıksızlık hissinden engeller ve böylece gökdalışçının "serbest düşüşü" terminal hıza ulaştıktan sonra vücudun ağırlığının havadan oluşan bir yastıkla desteklendiği hissini oluşturur.

Tarihi

On altıncı yüzyıldan önceki batı dünyasında, genel olarak düşen bir cismin hızı ağırlığına doğru orantılı olacağı farz edilmiştir, yani 10 kilogram bir objenin 1 kilogram aynı maddeden oluşan bir objeden aynı ortamda daha hızlı düşeceği beklenmiştir. Antik Yunan filozofu Aristoteles (384-322 MÖ) Fizik'te (7.Kitap) düşen objeleri tartıştı. (mekaniklerde en eski kitaplardandır) (Aristoteles fiziğine bakınız)

On ikinci yüzyıl Irak'ında, Ebu'l-Berekât Bağdâdi düşen cisimlerin yerçekimsel ivmesine düşen cisimlerin ivmesine, ardışık hız artışları sonucu ardışık güç artışlarının toplamı olarak bir açıklama getirmiştir. Shlomo Pines'e göre, Bağdâdi'nin hareket teorisi "Aristoteles'in temel dinamik yasasına [yani, sabit güç değişmeyen hareket oluştururak] en eski reddiyedir [ve böylece] klasik fiziğin temel [yani, sürekli olarak uygulanan gücün ivme oluşturacağı] yasasının anlaşılmaz modasının belirsiz bir şekilde öngörülmesidir". On dördüncü yüzyılda, Jean Buridan ve Saksonyalı Albert, düşen bir cismin hızlanması, artan ivmesinin bir sonucu olduğunun açıklamasını yaparken Ebu Berekât'ın açıklamasına atıfta bulunmuştur.

Uydurma olabilecek bir hikâyeye göre, 1589-92 yıllarında Galileo, eşit olmayan ağırlıktaki iki cismi Pisa Kulesi'nden bıraktı. Böyle bir düşüşün meydana gelme hızı göz önüne alındığında, Galileo'nun bu deneyden çok fazla bilgi elde etmiş olabileceği şüpheli bir konudur. Kendisinin düşen objelere gözlemleri aslında yokuşlardan aşağı yuvarlanan cisimlerle ilgili gözlemlerdi. Bu durum, zaman aralıklarını su saatleri ve kendi nabzıyla ölçebildiği noktaya kadar yavaşlattı. (kronometreler henüz icat edilmemişti) Bunu, "iki gözlem arasındaki sapmanın bir nabız atımının onda birini asla aşmadığı bir doğruluk" elde edene kadar "tam yüz kez" tekrarladı. 1589-92 yılları arasında, Galileo De Motu Antiquiora'yı, yayınlanmamış düşen cisimlerin hareketlerine dair makale yazdı.

Örnekler

Serbest düşüşteki obje örnekleri şunlardır:

  • İtiş gücü olmayan uzaydaki bir uzay aracı. (örnek olarak serbest bir yörüngedeyse veya yörünge altı yoldaysa (balistik) (birkaç dakika yukarı çıkıp daha sonra aşağı iniyorsa))
  • Serbest düşme tübünün başından bırakılan bir obje.
  • Yukarı fırlatılan bir obje veya yerden yukarı yavaş hızlarda zıplayan bir insan. (hava direnci ağırlığa göre önemsizken)
  • Ağaçtan düşen elma.

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Kuvvet</span> kütleli bir cisme hareket kazandıran etki

Fizik disiplininde, kuvvet bir cismin hızını değiştirmeye zorlayabilen, yani ivmelenmeye sebebiyet verebilen - hızında veya yönünde bir değişiklik oluşturabilen - bir etki olarak tanımlanır, bu etki diğer kuvvetlerle dengelenmediği müddetçe geçerlidir. Itme ya da çekme gibi günlük kullanımda yer alan eylemler, kuvvet konsepti ile matematiksel bir netliğe ulaşır. Kuvvetin hem büyüklüğü hem de yönü önemli olduğundan, kuvvet bir vektör olarak ifade edilir. Kuvvet için SI birimi, newton (N)'dur ve genellikle F simgesi ile gösterilir.

<span class="mw-page-title-main">Mekanik</span> kuvvetlere veya yer değiştirmelere maruz kalan fiziksel cisimlerle ilgilenen bilim

Mekanik, fiziğin fiziksel nesnelerin hareketleriyle, özellikle kuvvet, madde ve hareket arasındaki ilişkilerle ilgili alanıdır. Nesnelere uygulanan kuvvetler yer değiştirmeler veya bir nesnenin çevresine göre konumunda değişikliklerle sonuçlanır. Fizik'in bu dalının kökenleri Antik Yunanistan'da Aristoteles ve Arşimet'in yazılarında bulunur.. Erken modern dönem sırasında, Galileo, Kepler ve Newton gibi bilim adamları şimdiki klasik mekaniğin temellerini attılar. Klasik mekanik, duran veya ışık hızından çok daha düşük hızlarla hareket eden cisimlerle ilgili klasik fizikin bir dalıdır. Kuantum aleminde olmayan cisimlerin hareketini ve üzerindeki kuvvetleri inceleyen bilim dalı olarak da tanımlanabilir. Alan bugün kuantum teorisi açısından daha az anlaşılmıştır.

Kütleçekim ya da çekim kuvveti, kütleli her şeyin gezegenler, yıldızlar ve galaksiler de dahil olmak üzere birbirine doğru hareket ettiği doğal bir fenomendir. Enerji ve kütle eşdeğer olduğu için ışık da dahil olmak üzere her türlü enerji kütleçekime neden olur ve onun etkisi altındadır.

Kinematik,, hareketi, sebep ve tesirlerini göz önüne almadan inceleyen mekaniğin bir bölümü. Kinematik, hareketin ve ondan doğan hız ve ivmenin anlaşılmasıyla kavranabilir. Hareket bir cismin sürekli, bir noktadan diğer bir noktaya olan yer değiştirmesidir. Hareketin en basiti, bir pompadaki pistonun hareketi gibi doğrusal harekettir. Diğer bir tür hareket de bir eğri boyunca olan yer değiştirme sonucu ortaya çıkar. Gezegenler ve uyduların yörüngelerinde bu tür bir harekete rastlanır.

Fizikte, kütle, Newton'un ikinci yasasından yararlanılarak tanımlandığında cismin herhangi bir kuvvet tarafından ivmelenmeye karşı gösterdiği dirençtir. Doğal olarak kütlesi olan bir cisim eylemsizliğe sahiptir. Kütleçekim kuramına göre, kütle kütleçekim etkileşmesinin büyüklüğünü de belirleyen bir çarpandır (parametredir) ve eşdeğerlik ilkesinden yola çıkılarak bir cismin kütlesi kütleçekimden elde edilebilir. Ama kütle ve ağırlık birbirinden farklı kavramlardır. Ağırlık cismin hangi cisim tarafından kütleçekime maruz kaldığına göre ve konumuna göre değişebilir.

<span class="mw-page-title-main">Newton'un hareket yasaları</span> Bilimsel Yasalar

Newton'un hareket yasaları, bir cisim üzerine etki eden kuvvetler ve cismin yaptığı hareket arasındaki ilişkileri ortaya koyan üç yasadır. İlk kez Isaac Newton tarafından 5 Temmuz 1687 tarihinde yayımlanan Philosophiae Naturalis Principia Mathematica adlı çalışmada ortaya konmuştur. Bu yasalar klasik mekaniğin temelini oluşturmuş, bizzat Newton tarafından fiziksel nesnelerin hareketleri ile ilgili birçok olayın açıklanmasında kullanılmıştır. Newton, çalışmasının üçüncü bölümünde, bu hareket yasalarını ve yine kendi bulduğu evrensel kütleçekim yasasını kullanarak Kepler'in gezegensel hareket yasalarının elde edilebileceğini göstermiştir.

1. Yasa
Eylemsiz referans sistemi adı verilen öyle referans sistemleri seçebiliriz ki, bu sistemde bulunan bir parçacık üzerine bir net kuvvet etki etmiyorsa cismin hızında herhangi bir değişiklik olmaz. Bu yasa genellikle şu şekilde basitleştirilir: “Bir cisim üzerine dengelenmemiş bir dış kuvvet etki etmedikçe, cisim hareket durumunu korur.”
2. Yasa
Eylemsiz bir referans sisteminde, bir parçacık üzerindeki net kuvvet onun çizgisel momentumunun zaman ile değişimi ile orantılıdır:
<span class="mw-page-title-main">Newton (birim)</span>

Newton, SI birim sisteminde kuvvet birimi olup simgesi N'dir. Terim, fizik bilimine yaptığı katkılar nedeni ile İngiliz bilim insanı Isaac Newton'un adı ile anılır.

<span class="mw-page-title-main">Potansiyel enerji</span> skaler büyüklük

Potansiyel enerji, cisimlerin bir alanda bulundukları fiziksel durumlardan ötürü depoladığı kabul edilen enerjidir. Örneğin yükseğe kaldırılan bir cisim, barajlarda biriken su, sıkıştırılan veya gerilen yay potansiyel enerji depolar. Potansiyel enerji mevcut alandaki konuma veya cisimdeki değişikliğe bağlıdır. EP ya da U ile gösterilir. Birimi diğer enerjiler gibi Joule'dür. (J)

<span class="mw-page-title-main">Kurtulma hızı</span> bir cismin kendisini bağlayan kütleçekim alanından kurtulak için varması gereken hız

Fizikte, kurtulma hızı kütleçekim alanındaki herhangi bir cismin kinetik enerjisinin söz konusu alana bağıl potansiyel enerjisine eşit olduğu andaki hızıdır. Genellikle üç boyutlu bir uzayda bulunan cismin kendisini etkileyen kütleçekim alanından kurtulabilmesi için ulaşması gereken sürati ifade eder.

<span class="mw-page-title-main">Ağırlıksızlık</span>

Ağırlıksızlık ya da ağırlığın yokluğu aslında dışarıdan uygulanan kuvvetler, genellikle yerden koltuktan yataktan vb. uygulanan temas gerektiren kuvvetler, sonucu oluşan baskı ve gerilmenin yokluğudur. Sezgilere aykırı bir şekilde düzgün kütleçekimsel kuvvet tek başına gerilmeye ve baskıya neden olmaz ve b tip bir kuvvetin bulunduğu ortamda serbest düşüşte olan bir cisim g- kuvveti algılamaz ve ağırlıksız hisseder. Bu ayrıca sıfır g- kuvveti olarak adlandırılır. Cisimler kütleçekimi dışındaki kuvvetlere maruz kaldığında, santrifüjde ya da dönen bir uzay istasyonunda ya da roketleri ateşlenen bir uzay mekiğinde, kuvvet cismin eylemsizliğini bastırdığından ağırlık hissi oluşur. Bu tip durumlarda, ağırlık hissi, kütleçekimsel alan sıfır dahi olsa baskı durumu ile oluşabilir. Bu tip durumlarda g kuvveti hissedilir ve cisimler ağırlıksız değildir. Kütleçekimsel alan düzgün olmadığında serbest düşüşteki bir cisim gelgitsel kuvvetler hissedecektir ve cisim baskısız değildir. Bir karadeliğin yanında bu tip gelgitsel kuvvetler çok güçlü olabilir. Dünya göz önüne alındığında bu tip kuvvetler oldukça küçüktür. Özellikle de küçük boyutlu cisimler için. Örneğin insan vücudu veya bir uzaymekiği için. Ve bu durumlarda genel ağırlıksızlık hissi korunmuş olur. Bu durum mikroyerçekimi olarak da bilinir ve yörüngede dolanan uzay mekiklerinde oldukça yaygındır.

Genel görelilik fiziğinde, eşdeğerlik ilkesi, kütleçekimsel kütle ve eylemsiz kütle arasındaki eşdeğerlikle ilgilenen çeşitli kavramlardan biridir. Einstein'in gözlemlerine göre büyük kütleli bir cismin üzerinde durulduğunda hissedilen kütleçekimsel kuvvet, eylemsiz olmayan (ivmeli) referans çerçevesindeki bir gözlemcinin hissettiği uydurma kuvvetle aynıdır.

<span class="mw-page-title-main">Kütle ve ağırlık</span>

Kütle ve ağırlık birbirlerinden farklı kavramlara ve özelliklere sahiptir. Ağırlık, temel birimi Newton (N) olan ve yerçekimi tarafından cisme etki eden kuvvet olarak tanımlanırken, kütlenin temel birimi kilogramdır (kg) ve maddenin miktarı veya enerjisi ile ilgili bir büyüklüktür.

Galile değişmezliği ya da Galile göreliliği der ki; hareket kanunlarının hepsi eylemsiz çerçeve içinde olur. Galileo Galilei bu prensibi ilk olarak 1632'de İki Dünya Sistemi Hakkında Diyalog adlı kitabında kullanmıştır. Prensibi açıklarken gemi örneğini vermiştir. Sakin bir denizde, hiçbir yere çarpmadan sabit hızda giden gemide, güvertenin altında olan bir gözlemci geminin hareketsiz olduğunu ya da hareket edip etmediğini söyleyemez demiştir. Bir diğer güzel örnekse; Dünyamız Güneş'in etrafında saniyede yaklaşık olarak 30 kilometre/saniye hızla dönmektedir ve güvertedeki gözlemci gibi biz de Dünya hakkında teknik olarak bu eylemsiz çerçeve kuralına uymasa da aynı şeyleri söyleyebiliriz.

Orta Çağ İslam dünyasında fizik, İslam'ın Altın Çağı, Antik Yunan yeniliklerine ek olarak doğa bilimlerinde birçok gelişmeler görüldü. Bu zaman aralığında İslam Teolojisi bilgiye ulaşmaya çalışan düşünürleri cesaretlendirirken, bilim etkisinin ya da gücünün dini inanç adına herhangi bir çelişkinin ya da sakıncanın olmadığı yargısına sahipti. Bu dönemde sayabileceğimiz düşünürler arasında Farabi, Kindî, İbn-i Sina, İbn-i Heysem ve İbn Bacce yer alır. Bu düşünürlerin önemli çalışmaları Orta Çağ Döneminin bilimsel kaynaklarıydı ve Lingua franca olarak kabul edilen Arapça esas alınarak yazılmıştı.

Serbest cisim diyagramı veya kuvvet diyagramı, genellikle mühendis ve fizikçilerin bir cisim üzerindeki kuvvet ve momentleri analiz edebilmelerine sağlayan veren kaba çizimden meydana gelen görsel bir araçtır.

Aristoteles fiziği veya Aristo fiziği, Yunan filozof Aristoteles'in eserlerinde tanımladığı doğa bilimlerin bir biçimidir. Fizik kitabında Aristoteles, fizikte değişimin genel prensiplerini belirler: yaşayan ve ölü, ilahi ve dünyevi, tüm hareketlilikleri içeren, mekana göre ve boyut ya da miktara göre değişen, bir türün niteliksel değişikliği; ve olmak ve yok olmak.

Birtakım dinamik denklemler, normal şartlar altında yerçekimi kuvvetinin etkisiyle hareket etmekte olan cisimlerin doğrultularını tanımlamaktadır. Örneğin; Newton'un genel yerçekimi yasası,F = mg.(m cismin kütlesi). Bu varsayım dünya yüzeyinden kısa mesafede düşmekte olan cisimler için kabul edilmesine karşın uzun mesafede serbest düşüş yapan cisimler, için tam olarak doğru değildir.

Fizik'te, yerçekimi teorileri kütleli cisimlerin hareket mekanizmalarını kapsayan etkileşimleri esas alır. Antik zamanlardan bu yana birçok Yerçekimi teorisi ortaya atılmıştır.

<span class="mw-page-title-main">Terminal hızı</span>

Terminal hızı, bir nesnenin bir akışkanın içinde düşerken ulaşabileceği maksimum hızdır. Sürükleme kuvveti (Fd) ve kaldırma kuvvetinin toplamı, nesneye etki eden aşağı doğru yerçekimi kuvvetine (Fg) eşit olduğunda bu hıza ulaşılmaktadır. Cisim üzerindeki net kuvvet sıfır olduğundan, cismin ivmesi sıfırdır.

<span class="mw-page-title-main">Mikro Yer Çekimli Ortam</span>

Mikro-g ortamı terimi aşağı yukarı ağırlıksızlık ve sıfır-g, terimleri ile eşanlamlıdır ancak g-kuvveti'lerinin asla tam olarak sıfır olmadığı gerçeğine vurgu yaparak - sadece çok azdır. Mikro yerçekimi sembolü μg, Uzay Mekiği uçuşlarının STS-87 ve STS-107 amblemlerinde kullanıldı çünkü bu uçuşlar alçak Dünya yörüngesi'ndeki mikro yerçekimi araştırmalarına ayrılmıştı.