İçeriğe atla

Sembolik matematik

Sembolik matematik; sembolik hesaplama ve cebirsel hesaplamadan oluşan bilgisayar cebrindeki, matematiksel ifadeleri ve diğer matematiksel nesneleri manipüle etmek için kullanılan algoritma ve yazılımların çalışması ve geliştirilmesine atıfta bulunan bilimsel bir alandır.Daha açıkça ifade etmek gerekirse, bilgisayar cebri bilimsel hesaplamanın bir alt alanı sayılır ve bununla beraber bilimsel hesaplama genelde yaklaşık kayan nokta sayılarına ve sayısal yaklaşımlara dayanmaktadır.Buna karşın sembolik hesaplama, hiçbir değişkeni içermeyen ifadelerle tam hesaplamayı vurgulamaktadır.Değişken içermeyen ifadelere ilişkin semboller manipüle edilmektedir ve adı bundan dolayı sembolik matematik olarak kabul edilir.

Sembolik hesaplama yapan yazılım uygulamaları, bilgisayarlı cebir sistemleri olarak adlandırılır.Sistem terimi kullanılır çünkü bu kavram, bilgisayardaki matematiksel verileri temsil eden bir yöntem ve bir programlama dili içeren kompleks uygulamaya işaret etmektedir.Bu uygulamalar; özel bir hafıza yöneticisi, matematiksel ifadelerin girişi / çıkışı için bir kullanıcı arabirimi, ifadelerin basitleştirilme mekanizması, zincir kuralı kullanarak farklılaştırma, polinom faktörizasyonu, belirsiz integrasyon gibi klasik işlemleri gerçekleştirmek için gerekli mekanizmalarına sahiptir.

Bilgisayar cebrinin başlangıcı 1970'li yıllar kabul edilir.Uzun zamandır bilinen algoritmalar bilgisayarlara uygulandığında verimlilik çok düşüktü.[1] Bu nedenle, araştırmacılar çalışmalarının büyük bir kısmını, algoritmaları etkili kılmak ve yeni algoritmalar keşfetmek için tekrar klasik cebir alanına ayırmışlardır.Buna örnek olarak, kesirleri basitleştirmek için polinomun en büyük ortak bölenlerinin hesaplanması verilebilir.Şaşırtıcı bir şekilde Öklid'in klasik algoritmasının, sonsuz alanlar üzerindeki polinomlar için verimsiz olduğu ortaya çıktı.Böylece yeni algoritmaların geliştirilmesi hedeflenecekti. Aynı şey, lineer cebir esaslı klasik algoritmalar için de geçerlidir.

Bilgisayar cebri, matematiksel deneyler yapmak ve sayısal programlarda kullanılan formülleri tasarlamak için yaygın bir şekilde kullanılır. Aynı zamanda, sayısal yöntemler tamamen başarısız olduğunda, açık anahtar şifrelemesinde olduğu gibi, bazı doğrusal olmayan problemler için tam bilimsel hesaplamalar da kullanılabilir.

Sembolik matematik; bilgisayar bilimlerinde veri gösterimi, sayılar, ifadeler ve basitleştirme gibi alanlarda kullanılmaktadır.

Kaynakça

  1. ^ Kaltofen, Erich (1982), "Factorization of polynomials", in Buchberger, B.; Loos, R.; Collins, G., Computer Algebra, Springer Verlag, CiteSeerX 10.1.1.39.7916

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Matematik</span> nicelik, yapı, uzay ve değişim gibi konularla ilgilenen bilim dalı

Matematik ; sayılar, felsefe, uzay ve fizik gibi konularla ilgilenir. Matematikçiler ve filozoflar arasında matematiğin kesin kapsamı ve tanımı konusunda görüş ayrılığı vardır.

<span class="mw-page-title-main">Bilgisayar bilimi</span> belirli evren kurallarına dayalı, sistematik çalışan ve elementlerin ya da ağların birbirleriyle olan ilişkisi

Bilgisayar bilimi, bilgisayarların tasarımı ve kullanımı için temel oluşturan teori, deney ve mühendislik çalışmasıdır. Hesaplamaya ve uygulamalarına bilimsel ve pratik bir yaklaşımdır. Bilgisayar bilimi; edinim, temsil, işleme, depolama, iletişim ve erişimin altında yatan yönteme dayalı prosedürlerin veya algoritmaların fizibilitesi, yapısı, ifadesi ve mekanizasyonunun sistematik çalışmasıdır. Bilgisayar biliminin alternatif, daha özlü tanımı "büyük, orta veya küçük ölçekli algoritmik işlemleri otomatikleştirme çalışması" olarak nitelendirilebilir. Bir bilgisayar bilimcisi, hesaplama teorisi ve hesaplama sistemlerinin tasarımı konusunda uzmanlaşmıştır.

Bilişim, bilişim bilimi ya da bilgisayar bilimi, bilgi ve hesaplamanın kuramsal temellerini ve bunların bilgisayar sistemlerinde uygulanabilmeleri sağlayan pratik teknikleri araştıran bir yapısal bilim dalıdır. Bilişimciler ya da bilgisayar bilimcileri bilgi oluşturan, tanımlayan ve dönüştüren algoritmik süreçler icat edip, kompleks sistemleri tasarlamak ve modellemek için uygun soyutlamalar formüle ederler. Bilişim Dünya'da hızla gelişmeye devam eden önemli bir teknolojidir.

Cebir sayılar teorisini, geometriyi ve analizi içine alan geniş bir matematik dalıdır. Temel matematik işlemlerinden, çember ve daire alanları bulmayı kapsayan geniş bir ilgi alanına sahiptir. Cebir, mühendislik ve eczacılık gibi birçok alanda kullanılmaktadır. Kuramsal cebir, ileri matematiğin bir dalı olmakla birlikte sadece uzmanlar tarafından çalışılan bir koldur.

<span class="mw-page-title-main">Aritmetik</span> temel matematik dalı

Aritmetik; matematiğin sayılar arasındaki ilişkiler ile sayıların problem çözmede kullanımı ile ilgilenen dalı. Aritmetik kavramı ile genellikle sayılar teorisi, ölçme ve hesaplama kastedilir. Bununla birlikte bazı matematikçiler daha karmaşık çeşitli işlemleri de aritmetik başlığı altında değerlendirirler.

<span class="mw-page-title-main">Hârizmî</span> Fars matematikçi, astronom ve coğrafyacı

Hârizmî ya da tam künyesiyle Ebû Ca'fer Muhammed bin Mûsâ el-Hârizmî ; matematik, gök bilim, coğrafya ve algoritma alanlarında çalışmış Fars bilim insanı. Hârizmî 780 yılında Harezm bölgesinin Hive şehrinde dünyaya gelmiştir. 850 yılında Bağdat'ta ölmüştür.

<span class="mw-page-title-main">Sayısal analiz</span>

Sayısal analiz, diğer adıyla nümerik analiz veya sayısal çözümleme, matematiksel analiz problemlerinin yaklaşık çözümlerinde kullanılan algoritmaları inceler. Bu nedenle birçok mühendislik dalı ve doğa bilimlerinde önem arz eden sayısal analiz, bilimsel hesaplama bilimi olarak da kabul edilebilir. Bilgisayarın işlem kapasitesinin artması ile gündelik hayatta ortaya çıkan birçok sistemin matematiksel modellenmesi mümkün olmuş ve sayısal analiz algoritmaları burada ön plana çıkmıştır. 21. yüzyıldan itibaren bilimsel hesaplama yöntemleri mühendislik ve doğa bilimleri ile sınırlı kalmamış ve sosyal bilimler ile işletme gibi alanları da etkilemiştir. Sayısal analizin alt başlıklarına adi diferansiyel denklemlerin yaklaşık çözümleri ve özellikle veri biliminde önem taşıyan sayısal lineer cebir ile optimizasyon örnek gösterilebilir.

<span class="mw-page-title-main">Matematiksel yazılım</span>

Matematiksel yazılım; model, sayısal, sembolik veya geometrik veri analizi veya sayısal hesaplamalar için kullanılır. Matematiksel yazılımlar, başta eğitim olmak üzere bilim, sağlık, savunma, bilgisayar gibi alanlarda yeni şeyler üretme ve geliştirmede kullanılan programların genel adı. Matematik yazılımları kategorisinde; matematiksel gösterim, grafik oluşturma, çizim, modelleme, hesaplama, programlama ve benzeri türden programlar bulunur.

Bilgisayarlı cebir sistemi (BCS) sembolik matematiği kolaylaştıran yazılım programıdır. BCS işlevselliğinin özü sembolik biçimlerdeki matematiksel ifadelerin işleme koyabilmesidir.

Bilgisayar bilimci, bilgisayar bilimi, bilgi ve hesaplamanın teorik temellerinin incelenmesi ve bunların uygulamaları hakkında uzmanlaşmış bir kişidir.

<span class="mw-page-title-main">Hesaplamalı fizik</span>

Hesaplamalı fizik, fizik sorunlarını çözebilmek için sayısal algoritmaların üretilmesi ve gerçeklenmesini içerir. Genelde kuramsal fizikin bir alt dalı olarak değerlendirilir ancak bazen de kuramsal ve deneysel fizik arasında orta bir dal olarak da düşünülür.

<span class="mw-page-title-main">Julia (programlama dili)</span>

Julia yüksek başarımlı üst düzey bir programlama dilidir.

Tarih boyunca matematiğin konu çeşitliliği ve derinliği artmaktadır, matematiği kavrama, birçok konuyu matematiğin daha genel alanlarına göre sınıflandırma ve düzenleme için bir sistem gerektirir. Bir dizi farklı sınıflandırma şeması ortaya çıkmıştır ve bazı benzerlikleri paylaşsalar da, kısmen hizmet ettikleri farklı amaçlara bağlı olarak farklılıkları vardır. Ek olarak, matematik geliştirilmeye devam ettikçe, bu sınıflandırma şemaları da yeni oluşturulan alanları veya farklı alanlar arasında yeni keşfedilen bağlantıları dikkate alacak şekilde değişmelidir. Farklı alanlar arasındaki sınırı aşan, genellikle en aktif olan bazı konuların sınıflandırılması daha zor hale gelir.

Hesaplamalı kimya, kimya problemlerini çözmeye yardımcı olmak için bilgisayar simülasyonunu kullanan bir kimya dalıdır. Moleküllerin, katıların yapı ve özelliklerini hesaplamak için verimli bilgisayar programlarına dahil edilmiş teorik kimya yöntemlerini kullanır. Bu yöntemlerin kullanılmasının nedeni, hidrojen moleküler iyonu ile ilgili nispeten yeni sonuçlar dışında, kuantum çok-gövdeli(many-body) problemlerin analitik olarak çözülemez oluşudur. Hesaplama sonuçları normal olarak kimyasal deneylerle elde edilen bilgileri tamamlarken, bazı durumlarda gözlemlenmeyen kimyasal olayları da tahmin edebilmektedir. Yeni ilaç ve materyallerin tasarımında yaygın olarak kullanılmaktadır.

<span class="mw-page-title-main">Hesaplamalı karmaşıklık teorisi</span> hesaplama problemlerini kendi zorluklarına göre sınıflandırmaya ve bu sınıfları birbirleriyle ilişkilendirmeye odaklanan teorik bilgisayar bilimlerinde hesaplama teorisinin bir dalı

Hesaplamalı karmaşıklık teorisi, hesaplama problemlerini kendi zorluklarına göre sınıflandırmaya ve bu sınıfları birbirleriyle ilişkilendirmeye odaklanan teorik bilgisayar bilimlerinde hesaplama teorisinin bir dalıdır. Bir hesaplama probleminde prensip, algoritmada belirtilen matematiksel adımların mekaniğe uygulanması yoluyla probleme yaklaşmaktır. Ve bununla beraber hesaplama karmaşıklık teorisindeki problemler, eşdeğer bir bilgisayar tarafından çözülebilen ortamlarda kullanılır.

<span class="mw-page-title-main">Hesaplamalı geometri</span>

Hesaplamalı geometri, geometri açısından ifade edilebilen algoritmaların incelenmesine ayrılmış bilgisayar bilimlerinin bir dalıdır. Bazı çalışmalar tamamen geometrik problemlerden meydana gelirken bazıları ise hesaplamalı geometrik algoritmaların incelenmesi sonucunda meydana gelmektedir. Bunun gibi problemlerin hesaplama geometrisinin bir parçası olduğu düşünülmektedir. Modern hesaplamalı geometri son zamanlarda gelişme göstermesine karşın, tarihin antik dönemine kadar uzanan en eski bilgi işlem alanlarından biridir.

<span class="mw-page-title-main">Bilimsel hesaplama</span>

Bilimsel hesaplama karmaşık problemleri anlamak ve çözmek için gelişmiş bilgi işlem yeteneklerini kullanan çok disiplinli bir alandır. Hesaplamalı bilim üç farklı unsuru birleştirmektedir:

Bilgisayar bilimi, matematiksel modelleme ve problem çözme yaklaşımlarında köklü bir değişim geçirmektedir. İlk bilgisayar bilimcileri öncelikle ayrık matematik ile ilgilenmişlerdir. Bu dönemde grafikler, ağaçlar ve sonlu sayıda veri seti içeren diziler gibi yapılara odaklanmışlardır. Hızlı kayan noktalı işlemleri "büyük veriler" ile birlikte icra etmeye çalışmışlardır. Üç boyutlu taramanın ve diğer yoğun girdi kaynaklarının gerçeklenmesi modern bilgisayar bilimi pratisyenleri ve mühendisleri tarafından mümkün kılınmıştır. Buna paralel olarak gerçek değere yakın veriyi işlemek ve anlamak için sağlam yöntemler tasarlama ihtiyacı da doğmuştur. Bu ihtiyacın karşılanması için bilgisayar bilimcileri, özellikle ayrık matematik, çok değişkenli hesap, lineer cebir gibi alanlarda bilgi ve tecrübelerini kullanmalıdırlar.

Matematik konularının listesi, matematik ile ilgili çeşitli konuları kapsar. Bu listelerden bazıları yüzlerce makaleye bağlantı içerir; bazıları sadece birkaç tane ile bağlantılıdır. Bu makale, aynı içeriği, göz atmaya daha uygun bir şekilde organize halde bir araya getirmektedir. Listeler, temel ve ileri matematik, metodoloji, matematiksel ifadeler, integraller, genel kavramlar, matematiksel nesneler ve referans tablolarının özelliklerini kapsar. Ayrıca insanların adını taşıyan denklemleri, matematiksel toplulukları, matematikçileri, matematik dergilerini ve meta listeleri de kapsar.

Burada, sayısal analiz veya veri analizi için kullanılmak üzere tasarlanmış önemli son kullanıcı bilgisayar uygulamaları listelenmiştir: