İçeriğe atla

Schwinger parametrizasyonu

Schwinger parametrizasyonu, bir veya daha fazla döngülü Feynman diyagramlarında ortaya çıkan döngü integrallerinin analizi için bir tekniktir.

şeklindeki yaygın bilinen ifadeyi kullanan Julian Schwinger, integralin sadeleştirilebileceğini fark etti:
(Re(n)>0 için)

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">İntegral tablosu</span> Vikimedya liste maddesi

İntegral, Matematikteki temel işlemlerden biridir. Bu maddede yaygın integrallerin hesaplanışını bulacaksınız.

<span class="mw-page-title-main">Gama fonksiyonu</span>

Gama fonksiyonu, matematikte faktöriyel fonksiyonunun karmaşık sayılar ve tam sayı olmayan reel sayılar için genellenmesi olan bir fonksiyondur. Г simgesiyle gösterilir.

Aşağıdaki liste üstel fonksiyonların integrallerini içermektedir. İntegral fonksiyonlarının tüm bir listesi için lütfen İntegral tablosu sayfasına bakınız.

where
<span class="mw-page-title-main">Gamma dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında gamma dağılımı iki parametreli bir sürekli olasılık dağılımıdır. Bu parametrelerden biri ölçek parametresi θ; diğeri ise şekil parametresi k olarak anılır. Eğer k tam sayı ise, gamma dağılımı k tane üstel dağılım gösteren rassal değişkenlerin toplamını temsil eder; rassal değişkenlerin her biri nin üstel dağılımı için parametre olur.

<span class="mw-page-title-main">Cauchy dağılımı</span>

Olasılık kuramı ve istatistik bilim dallarında Cauchy-Lorentz dağılımı bir sürekli olasılık dağılımı olup, bu dağılımı ilk ortaya atan Augustin Cauchy ve Hendrik Lorentz anısına adlandırılmıştır. Matematik istatistikçiler genel olarak Cauchy dağılımı adını tercih edip kullanmaktadırlar ama fizikçiler arasında Lorentz dağılımı veya Lorentz(yen) fonksiyon veya Breit-Wigner dağılımı olarak bilinip kullanılmaktadır.

<span class="mw-page-title-main">Kalıntı teoremi</span>

Karmaşık analizdeki kalıntı teoremi veya bilinen bir diğer adıyla rezidü teoremi, analitik fonksiyonların kapalı eğriler üzerindeki çizgi integrallerini bulmak için kullanılan önemli bir araçtır ve ayrıca sık bir şekilde gerçel integralleri bulmak için de kullanılır. Cauchy integral teoremini ve Cauchy integral formülünü genelleştirir.

<span class="mw-page-title-main">Çizgi integrali</span>

Matematikte bir çizgi integrali, integrali alınan fonksiyonun bir eğri boyunca değerlendirildiği integraldir. Çeşitli farklı çizgi integralleri kullanılmaktadır. Kapalı eğrinin kullanıldığı durumlarda integrale kontür integrali denildiği de olmaktadır.

Gauss integrali, Euler–Poisson integrali olarak da bilinir, tüm reel sayılardaki ex2 Gauss fonksiyonunun integralidir. Alman matematik ve fizikçi Carl Friedrich Gauss'dan sonra adlandırlıdı. İntegrali şöyledir:

<span class="mw-page-title-main">Riemann zeta işlevi</span>

Matematikte Riemann zeta işlevi , Alman matematikçi Bernhard Riemann tarafından 1859'da bulunmuş olan ve asal sayıların dağılımıyla olan ilişkisinden ötürü sayı kuramında önemli yeri bulunan seçkin bir işlevdir. İşlev; fizik, olasılık kuramı ve uygulamalı istatistikte de kullanılmaktadır.

<span class="mw-page-title-main">Poligama fonksiyonu</span>

Matematik'te, poligama fonksiyonu' eşitliğin soludur ve türevin kuvvetine m konulduğunda eşitliğin sağ tarafındaki gama fonksiyonu'nun logaritma'sının (m + 1). türevi olarak tanımlanır.

<span class="mw-page-title-main">Digama fonksiyonu</span>

Matematik'te, digama fonksiyonu gama fonksiyonu'nun logaritmik türevi olarak tanımlanır:

Matematikte, Euler integral 'inin iki tipi vardır:

  1. Euler integral'inin ilk türü: Beta fonksiyonu
  2. Euler integral 'inin ikinci türü: Gama fonksiyonudur

Matematiksel analizin sayı teorisinde Euler–Mascheroni sabiti matematiksel sabit'tir. Yunan harfi Yunanca: γ (gama) ile gösterilir.

<span class="mw-page-title-main">Ters Gama fonksiyonu</span>

Matematik'te ters gama fonksiyonu özel fonksiyon'dur.

Matematik'te, elliptik gama fonksiyonu olağan Gama fonksiyonu'nunun q-analog'u q-Gama fonksiyonu'unun bir genelleştirimesi olarak verilir.

<span class="mw-page-title-main">Fresnel integrali</span>

Fresnel integrali, S(x) ve C(x), iki transendental fonksiyon'dur. Augustin-Jean Fresnel'e atfedilmiştir ve optikte kullanılmaktadır. Yakın alan Fresnel difraksiyon fenomeninde ortaya çıkar; aşağıdaki integral gösterimi ile tanımlanırlar:

<span class="mw-page-title-main">Beta fonksiyonu</span>

Matematik'te, beta fonksiyonu, Euler integrali'nin ilk türüdür,

Matematikte, a Neumann polinomali,Carl Neumann tarafından özel durum için sunulan, Bessel fonksiyonu terimleri içerisinde fonksiyonların 1/z açılımında kullanılan bir polinomdur.

Akışkanlar dinamiği alanında, basınç katsayısı bir boyutsuz sayı olup, bir akış alanındaki bağıl basınçları ifade eder. Basınç katsayısı, aerodinamik ve hidrodinamik çalışmalarında kullanılmaktadır. Her bir akış alanında, her konumsal noktanın kendine özgü bir basınç katsayısı, Cp değeri bulunmaktadır.

<span class="mw-page-title-main">Trigonometrik integral</span> bir integral tarafından tanımlanan özel fonksiyon

Matematikte, trigonometrik integraller trigonometrik fonksiyonları içeren temel olmayan integrallerin ailesidir.