İçeriğe atla

Schwarzschild yarıçapı

Schwarzschild yarıçapı, her kütle ile ilişkilendirilen karakteristik bir yarıçaptır. Verilen bir kütle bu yarıçapa kadar sıkıştırılırsa bilinen hiçbir kuvvet onun uzay zaman tekilliğine çökmesini engelleyemez. Schwarzschild yarıçapı terimi fizikte ve astronomide özellikle de kütleçekim ve genel görelilik teorilerinde kullanılır.

Cisimlerin Schwarzschild yarıçapları kütleleriyle doğru orantılıdır. Buna göre Dünya'nın Schwarzschild yarıçapı sadece 9mm iken Güneş'inki yaklaşık olarak 3 km'dir.

Bir cisim Schwarzschild yarıçapından daha küçükse kara delik olarak isimlendirilir. Dönmeyen bir cisim için Schwarzschild yarıçapında bulunan yüzey olay ufku işlevini görür. Ne ışık ne de diğer parçacıklar bu yüzey içerisindeki bölgeden kaçamaz bu yüzden bu cisimler karadelik olarak isimlendirilmiştir.

Formül

burada;

Schwarzschild yarıçapı,
yer çekimi sabiti,
cismin kütlesi, ve
ışık hızıdır.

Güneş kütlesine sahip bir kara delik için Schwarzschild yarıçapı 2.96 km'dir ve herhangi bir kara delik için Schwarzschild yarıçapı km. ile hesaplanır[1][2]

Kaynakça

  1. ^ Kutner, Marc Leslie (2003). Astronomy: a physical perspective. New York: Cambridge University Press. ISBN 978-0-521-52927-3. 
  2. ^ Guidry, Mike (2019). Modern general relativity: black holes, gravitational waves, and cosmology. Cambridge New York: Cambridge university press. ISBN 978-1-107-19789-3. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Yerçekimi</span> Dünyanın kütleçekimi

Yer çekimi, kütleçekimi ve merkezkaç kuvvetinin birleşik etkisi nedeniyle nesnelere aktarılan net ivmedir. Yönü bir şakul topuzuyla çakışan, gücü veya büyüklüğü normuyla temsil edilen vektörel bir niceliktir.

Fizikte, kütle, Newton'un ikinci yasasından yararlanılarak tanımlandığında cismin herhangi bir kuvvet tarafından ivmelenmeye karşı gösterdiği dirençtir. Doğal olarak kütlesi olan bir cisim eylemsizliğe sahiptir. Kütleçekim kuramına göre, kütle kütleçekim etkileşmesinin büyüklüğünü de belirleyen bir çarpandır (parametredir) ve eşdeğerlik ilkesinden yola çıkılarak bir cismin kütlesi kütleçekimden elde edilebilir. Ama kütle ve ağırlık birbirinden farklı kavramlardır. Ağırlık cismin hangi cisim tarafından kütleçekime maruz kaldığına göre ve konumuna göre değişebilir.

Ağırlık, bir cisme uygulanan kütleçekim kuvvetidir. Ağırlığın birimi newton'dur ve simgesi 'N' olarak gösterilir. Bir kiloluk bir cisim dünyada yaklaşık 9,8 Newtondur. Ölçü aracı dinamometredir. Kütleçekim kuvveti, çekim merkezinden uzaklaştıkça azalacağından Dünya'nın geoit şeklinden dolayı kutuplara gidildikçe artar, ekvatora gidildikçe azalır..

<span class="mw-page-title-main">Newton'un evrensel kütleçekim yasası</span> Fizik kanunu

Newton'un evrensel çekim yasası (klâsik mekaniğin bir parçasıdır) aşağıdaki gibi ifade edilir;

Her bir noktasal kütle diğer noktasal kütleyi, ikisini birleştiren bir çizgi doğrultusundaki bir kuvvet ile çeker. Bu kuvvet bu iki kütlenin çarpımıyla doğru orantılı, aralarındaki mesafenin karesi ile ters orantılıdır:

Burada:

  • F iki kütle arasındaki çekim kuvvetinin büyüklüğü,
  • G Evrensel çekim sabiti 6.67 × 10-11 N m2 kg-2,
  • m1 birinci kütlenin büyüklüğü,
  • m2 ikinci kütlenin büyüklüğü,
  • r ise iki kütle arasındaki mesafedir.
<span class="mw-page-title-main">Kurtulma hızı</span> bir cismin kendisini bağlayan kütleçekim alanından kurtulak için varması gereken hız

Fizikte, kurtulma hızı kütleçekim alanındaki herhangi bir cismin kinetik enerjisinin söz konusu alana bağıl potansiyel enerjisine eşit olduğu andaki hızıdır. Genellikle üç boyutlu bir uzayda bulunan cismin kendisini etkileyen kütleçekim alanından kurtulabilmesi için ulaşması gereken sürati ifade eder.

Fizikte Planck kütlesi (mP), Planck birimleri olarak bilinen doğal birimler sisteminde kütle birimidir.

Fizikçi Max Planck'tan sonra adlandırılan Planck parçacığı, Compton dalga boyu ile Schwarzschild yarıçapının eşit olduğu parçacığın kara delik kadar sıkıştırılması varsayımı ile elde edilmiştir. Kütlesi yaklaşık olarak Planck kütlesine eşittir ve Compton dalga boyu ile Schwarzschild yarıçapı yaklaşık olarak Planck uzunluğu kadardır. Planck kütlesi ve Planck uzunluğunu tanımlamak için bazen Planck parçacıkları ifadesi kullanılır. Bu parçacıklar Planck çağında evrenin oluşmasındaki bazı modellerde rol oynadı.

Planck kuvveti (FP), Planck birimleri olarak bilinen doğal birimler sisteminde kuvvet birimidir.

<span class="mw-page-title-main">Kütleçekimsel dalga</span>

Kütleçekimsel dalga veya kütleçekim dalgası (KÇD), fizikte uzayzaman eğriliğinde oluşan kırışıklık olup kaynağından dışarıya doğru bir dalga olarak yayılır. Albert Einstein tarafından 1915'te varlığı öngörülen bu dalgalar, Genel Relativite Teorisi'ne dayanarak kütleçekimsel ışıma şeklinde enerji naklederler. Tespit edilebilir kütleçekimsel dalga kaynakları, beyaz cüce, nötron yıldızı veya kara delik içeren çift yıldız sistemleri olabilir. Kütleçekimsel dalgaların varlığı, kendisiyle fiziksel etkileşimlerin yayılma hızını sınırlama kavramını getiren ve genel relativite ile ilgili Lorentz değişmezliğinin muhtemel bir sonucudur. Bu dalgaların, etkileşim hızını sonsuz olarak kabul eden Newton'un Çekim Teorisi'nde varlığı mümkün değildir.

Etkin sıcaklık genel olarak bir cismin emisyon eğrisi ya da dalga boyu fonksiyonu, bilinmediği zaman, o cismin sıcaklık değerini tahmin etmek amacıyla kullanılır. Yıldız ya da gezegen gibi bir cismin etkin sıcaklığı, bir kara cismin yaydığı toplam radyasyon enerjisinin bu cismin yaydığı enerjiye eşit olduğu zamanki sıcaklık değeridir.

<span class="mw-page-title-main">Kara cisim ışınımı</span> opak ve fiziksel yansıma gerçekleştirmeyen siyah cisimden yayılan ve sabit tutulan tekdüze ısı

Siyah cisim ışıması içinde elektromanyetik ışıma ya da çevresinde termodinamik dengeyi sağlayan ya da siyah cisim tarafından yayılan ve sabit tutulan tekdüze ısıdır. Işıma çok özel bir spektruma ve sadece cismin sıcaklığına bağlı olan bir yoğunluğa sahiptir. Termal ışıma, birçok sıradan obje tarafından kendiliğinden yayılan bir siyah cisim ışıması sayılabilecek türden bir ışımadır. Tamamen yalıtılmış bir termal denge ortamı siyah cisim ışımasını kapsar ve bir boşluk boyunca kendi duvarını yaratarak yayılır, boşluğun etkisi göz ardı edilebilecek kadar küçüktür. Siyah cisim oda sıcaklığında siyah görünür, yaydığı enerjinin çoğu kızılötesidir ve insan gözü ile fark edilemez. Daha yüksek sıcaklıklarda, siyah cisimlerin özkütleleri artarken renkleri de soluk kırmızıdan kör edecek şekilde parlaklığı olan mavi-beyaza dönüşür. Gezegenler ve yıldızlar kendi sistemleri ve siyah cisimler ile termal dengede olmamalarına rağmen, yaydıkları enerji siyah cisim ışımasına en yakın olaydır. Kara delikler siyah cisim olarak sayılabilirler ve kütlelerine bağlı bir sıcaklıkta siyah cisim ışıması yaptıklarına inanılır . Siyah Cisim terimi, ilk olarak Gustav Kirchhoff tarafından 1860 yılında kullanılmıştır.

<span class="mw-page-title-main">Kütleçekimsel elektromanyetizma</span>

Kütleçekimsel Elektromanyetizm, kısaltılmışı KEM, elektromanyetizm ve göreli kütleçekimi arasındaki eşitliklerin benzeşiklerinden oluşan bir settir; Özellikle: Maxwell'in alan eşitliği ve yakınsaması ve bazı durumlarda Einstein'ın genel göreliliğindeki alan eşitliklerinden bulunabilir. Kütleçekimsel manyetizm genelde özellikle kütleçekiminin kinetik etkilerini belirtmek için kullanılır, hareketli elektrik yükünün manyetik etkilerinin benzeşiğidir. KEM, yalıtılmış sistemlerden uzakta olduğunda ve yavaş hareket eden deney parçacıklarında daha geçerli ve doğrudur. 1893'te ilk kez genel görelilikten önce, Oliver Heaviside tarafından yayınlandığından beri benzeşiğinde ve eşitliklerinde çok az değişiklik olmuştur.

Fizik ve astronomi'de, Reissner–Nordström metriği Maxwell denklemlerini de içeren Einstein alan denklemlerinin statik çözümü olarak varsayımsal biçimde ortaya çıkmıştır. Kütlesi "M" olan, yüklü ama dönmeyen küresel yapıdaki yerçekimsel alana tekabül etmektedir.

Einstein'ın genel görelelik teorisine göre Schwarzschild metriği Einstein'ın alan denklemlerinin çözümüyle ortaya çıkmıştır. Küresel bir kütlenin dışındaki elektik yükü, angular momentumu ve evrensel kozmolojik sabiti sıfır varsayılan yerçekimsel alanı tarif eder. Bu çözüm yıldızlar veya gezegenler gibi düşük hızlarda dönen cisimler için oldukça yararlıdır. Dünya ve Güneş de bu cisimlere örnek olarak verilebilir. Bu çözüm ismini çözümünü 1916 yılında yayınlayan Karl Schwarzschild'den almıştır.

Kerr–Newman metriği genel relativitide yüklü, dönen kütlelerin çevresindeki uzay zaman geometrisini tarif eden Einstein–Maxwell denklemlerinin çözümüdür. Bu çözüm astrofizik alanındaki fenomenler için pek faydalı sayılmaz çünkü gözlemlenebilen astronomik objeler kayda değer net yük taşımazlar. Bu çözüm uygulama alanı yerine daha çok teorik fizik ve matematiksel ilginin bir sonucudur..

<span class="mw-page-title-main">Negatif kütle</span>

Negatif kütle, teorik fizikte normal kütlenin zıt işaretlisi olan varsayımsal madde kavramıdır, örneğin -2 kg. Bu durum bir ya da daha fazla enerji koşulunu ihlal eder ve negatif kütle için çekimin kuvvet olması gerektiği ve pozitif yönlü ivmeye sahip olması gerektiği anlaşmazlığından kaynaklanan bazı garip özellikler gösterir. Negatif kütle, solucan deliği inşa etme gibi bazı kuramsal teorilerde kullanılır. Egzotik maddeye benzeyen en yakın bilinen örnek Casimir etkisi tarafından üretilen sözde negatif basınç yoğunluğunun alanıdır. Genel izafiyet teorisinin kütleçekimini ve pozitif, negatif enerji yüklerinin hareket yasasını iyi tanımlamasına rağmen negatif kütle dolayısıyla başka temel kuvvetleri içermez. Diğer yandan, standart model, temel parçacıkları ve diğer temel kuvvetleri iyi tanımlamasına ve kütleçekimi kütle merkezini ve eylemsizliği derinlemesine içermesine rağmen kütleçekimini içermez. Negatif kütlenin kavramının daha iyi anlaşılabilmesi için kütleçekimini açık bir şekilde ifade eden modelle birlikte diğer temel kuvvetler de gerekebilir.

Klasik elektron yarıçapı, elektronların elektromanyetik radyasyon ile etkileşimlerinin dahil olduğu sorunların çözümü için kullanılan ve bir ölçek uzunluğunu tanımlayan birtakım temel fiziksel niceliklerdir. Homojen yük dağılımının klasik elektrostatik öz etkileşim enerjisi ile elektronun göreli kütle enerjisi arasında bağlantı kurar. Nokta parçacık olarak kabul edilen elektronlar, nokta yük taşırlar ve boyutsal bir varlıkları yoktur. Buna rağmen elektronların atomik ölçeklerdeki etkileşimlerini nitelendirme amacıyla bir uzunluk tanımlanır. Klasik elektron yarıçapı, SI birimleri kullanılarak şu şekilde tanımlanmaktadır:

Keşfedilip adlandırılan veya numaralandırılan asteroitlere ilişkin olarak birkaç fiziksel parametre ile yörünge elementleri dışında çok az şey bilinmektedir. Bazı fiziksel özellikleri yalnızca tahmin edilebilmekte, bu nedenle fiziksel veriler bazı genel geçer kabul gören varsayımlar vasıtasıyla belirlenmektedir.

<span class="mw-page-title-main">Çift merkezi</span>

Astronomide çift merkezi birbirinin yörüngesinde dönen iki veya daha fazla cismin kütle merkezidir ve cisimlerin etrafında döndüğü noktadır. Çift merkez fiziksel bir nesne değil, dinamik bir noktadır. Astronomi ve astrofizik gibi alanlarda önemli bir kavramdır. Bir cismin kütle merkezinden çift merkeze olan mesafesi iki cisim problemi olarak hesaplanabilir.

<span class="mw-page-title-main">Kütleçekimsel bağlanma enerjisi</span> Bir sistemi kütleçekimsel olarak bağlı durumdan çıkarmak için gereken minimum enerji

Bir sistemin kütleçekimsel bağlanma enerjisi, sistemin kütleçekimsel olarak bağlı durumunu kaybederek birbirinden tamamen ayrılması için kendisine eklenmesi gereken minimum enerjidir. Kütleçekimsel olarak bağlı bir sistem, tamamen ayrıldıklarında parçalarının enerjilerinin toplamından daha düşük bir kütleçekimsel potansiyel enerjiye sahiptir. Bu durum, sistemi minimum toplam potansiyel enerji ilkesine uygun olarak bir arada tutan şeydir.