İçeriğe atla

Schmidt sayısı

Akışkanlar dinamiğinde, bir akışkanın Schmidt sayısı (Sc olarak gösterilir), momentum difüzivitesi (kinematik viskozite) ile kütle difüzyonu oranı olarak tanımlanan bir boyutsuz sayıdır ve eşzamanlı momentum ve kütle difüzyonu konveksiyon süreçlerinin gerçekleştiği akışkan akışlarını karakterize etmek amacıyla kullanılır. Bu sayı, Alman mühendis Ernst Heinrich Wilhelm Schmidt (1892–1975) adına ithaf edilmiştir.

Schmidt sayısı, difüzivite için kayma bileşeni (viskozitenin yoğunlukla bölünmesi) ile kütle transferi difüzivitesi D oranıdır. Bu sayı, hidrodinamik tabaka ile kütle transferi sınır tabakasının göreceli kalınlığını fiziksel olarak ilişkilendirir.[1]

Schmidt sayısı şu şekilde tanımlanır:[2]

burada (SI birimleri ile):

  • kinematik viskozitedir (m2/s)
  • D kütle difüzivitesidir (m2/s).
  • μ akışkanın dinamik viskozitesidir (Pa·s = N·s/m2 = kg/m·s)
  • ρ akışkanın yoğunluğudur (kg/m3).

Schmidt sayısının ısı transferi karşılığı Prandtl sayısıdır (Pr). Termal difüzivite ile kütle difüzivitesi oranı ise Lewis sayısıdır (Le).

Türbülanslı Schmidt Sayısı

Türbülans araştırmalarında yaygın olarak kullanılan türbülanslı Schmidt sayısı şu şekilde tanımlanır:[3]

burada:

  • girdap viskozitesi olup birimi (m2/s) olarak belirtilir.
  • girdap difüzivitesidir (m2/s).

Türbülanslı Schmidt sayısı, momentumun türbülanslı taşınım hızı ile kütlenin (veya herhangi bir pasif skalerin) türbülanslı taşınım hızı arasındaki oranı tanımlar. Bu sayı, türbülanslı kütle transferinden ziyade türbülanslı ısı transferi ile ilgilenen türbülanslı Prandtl sayısı ile ilişkilidir. Türbülanslı sınır tabakası akışlarının kütle transferi problemini çözmek için önemli bir parametredir. En basit model olan Reynolds analojisi, türbülanslı Schmidt sayısının 1 olduğunu öngörmektedir. Deneysel veriler ve simülasyonlardan elde edilen bulgulara göre, türbülanslı Schmidt sayısı 0.2 ile 6 arasında değişkenlik göstermektedir.[4][5][6][7][8]

Stirling motorları

Stirling motorlar için, Schmidt sayısı özgül güç ile ilişkilidir. Prag Alman Politeknik Enstitüsü'nden Gustav Schmidt, 1871 yılında idealize edilmiş izotermal Stirling motoru modeli için şimdi ünlü olan kapalı form çözümünü yayınlamıştır.[9][10]

burada:

  • Schmidt sayısıdır
  • çalışma akışkanına aktarılan ısıdır
  • çalışma akışkanının ortalama basıncıdır
  • piston tarafından süpürülen hacimdir.

Kaynakça

  1. ^ tec-science (10 Mayıs 2020). "Schmidt number". tec-science (İngilizce). 22 Haziran 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Haziran 2020. 
  2. ^ Incropera, Frank P.; DeWitt, David P. (1990), Fundamentals of Heat and Mass Transfer, 3rd, John Wiley & Sons, s. 345, ISBN 978-0-471-51729-0  Eq. 6.71.
  3. ^ Brethouwer, G. (2005). "The effect of rotation on rapidly sheared homogeneous turbulence and passive scalar transport. Linear theory and direct numerical simulation". J. Fluid Mech. Cilt 542. ss. 305-342. Bibcode:2005JFM...542..305B. doi:10.1017/s0022112005006427. 24 Ekim 2022 tarihinde kaynağından arşivlendi. Erişim tarihi: 13 Temmuz 2024. 
  4. ^ Colli, A. N.; Bisang, J. M. (January 2018). "A CFD Study with Analytical and Experimental Validation of Laminar and Turbulent Mass-Transfer in Electrochemical Reactors". Journal of the Electrochemical Society. 165 (2). ss. E81-E88. doi:10.1149/2.0971802jes. 
  5. ^ Colli, A. N.; Bisang, J. M. (July 2019). "Time-dependent mass-transfer behaviour under laminar and turbulent flow conditions in rotating electrodes: A CFD study with analytical and experimental validation". International Journal of Heat and Mass Transfer. Cilt 137. ss. 835-846. doi:10.1016/j.ijheatmasstransfer.2019.03.152. 
  6. ^ Colli, A. N.; Bisang, J. M. (January 2020). "Coupling k Convection-Diffusion and Laplace Equations in an Open-Source CFD Model for Tertiary Current Distribution Calculations". Journal of the Electrochemical Society. Cilt 167. s. 013513. doi:10.1149/2.0132001JES. hdl:11336/150891Özgürce erişilebilir. 
  7. ^ Contigiani, C. C.; Colli, A. N.; González Pérez, O.; Bisang, J. M. (April 2020). "The Effect of a Conical Inner Electrode on the Mass-transfer Behavior in a Cylindrical Electrochemical Reactor under Single-Phase and Two-Phase (Gas-Liquid) Swirling Flow". Journal of the Electrochemical Society. 167 (8). s. 083501. Bibcode:2020JElS..167h3501C. doi:10.1149/1945-7111/ab8477. 
  8. ^ Donzis, D. A.; Aditya, K.; Sreenivasan, K. R.; Yeung, P. K. (2014). "The Turbulent Schmidt Number". Journal of Fluids Engineering. 136 (6). ss. https://doi.org/10.1115/1.4026619. doi:10.1115/1.4026619. 
  9. ^ Schmidt Analysis (updated 12/05/07) 18 Mayıs 2008 tarihinde Wayback Machine sitesinde arşivlendi.
  10. ^ "Archived copy". 26 Nisan 2009 tarihinde kaynağından arşivlendi. Erişim tarihi: 29 Nisan 2008. 

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Viskozite</span> bir sıvının fiziksel özelliği

Viskozite, akmazlık veya ağdalık, akışkanlığa karşı direnç. Viskozite, bir akışkanın, yüzey gerilimi altında deforme olmaya karşı gösterdiği direncin ölçüsüdür. Akışkanın akmaya karşı gösterdiği iç direnç olarak da tanımlanabilir. Viskozitesi yüksek olan sıvılar ağdalı olarak tanımlanırlar.

<span class="mw-page-title-main">Reynolds sayısı</span>

Akışkanlar dinamiği alanında, Reynolds sayısı, farklı durumlarda akışkan akışı desenlerini tahmin etmeye yardımcı olan bir boyutsuz sayıdır ve eylemsizlik kuvvetleri ile viskoz kuvvetler arasındaki oranı ölçer. Düşük Reynolds sayılarında, akışlar genellikle laminer akış tarafından domine edilirken, yüksek Reynolds sayılarında akışlar genellikle türbülanslı olur. Türbülans, akışkanın hız ve yönündeki farklılıklardan kaynaklanır ve bazen bu yönler kesişebilir veya akışın genel yönüne ters hareket edebilir. Bu girdap akımları, akışı karıştırmaya başlar ve bu süreçte enerji tüketir, bu da sıvılarda kavitasyon olasılığını artırır.

Grashof sayısı akışkanlar dinamiği ve ısı transferinde kullanılan boyutsuz bir sayıdır. Sık sık doğal taşınımı içeren konularda ortaya çıkar. Adını Alman mühendis Franz Grashof'tan alır.

dikey düz yüzeyler için
borular için
kaba cisimler için
g = yerçekimi ivmesi
β = genleşme katsayısı
Ts = yüzey sıcaklığı
T = ortam sıcaklığı
L = uzunluk
D = çap
ν = kinematik viskozite
<span class="mw-page-title-main">Prandtl sayısı</span>

Prandtl sayısı boyutsuz bir sayıdır. Momentum yayınımının termal yayınıma oranıdır. Sayı, Alman fizikçi Ludwig Prandtl'a ithafen adlandırılmıştır.

Darcy yasası , bir sıvının gözenekli bir ortamdan akışını tanımlayan bir denklemdir. Yasa, yer bilimlerinin bir kolu olan hidrojeolojinin temeldir. Kum yataklarından su akışı ile ilgili deneylerin sonucu.

<span class="mw-page-title-main">Taşınım olayı</span>

Taşınım olayı (veya taşınım fenomeni), mühendislik, fizik ve kimyada gözlemlenen ve üzerine araştırma gerçekleştirilen sistemlerin, kütle, enerji, yük, momentum ve açısal momentum değişimiyle ilgilenen çalışmalardır. Sürekli ortamlar mekaniği ve termodinamik gibi pek çok farklı alandan yararlanırken, ele aldığı konular üzerindeki ortaklıklara önemli düzeyde vurgu yapmaktadır.

<span class="mw-page-title-main">Momentum aktarımı</span>

Momentum aktarımı, akışkanlar mekaniği, parçacık fiziği, dalga mekaniği ve optik gibi alanlarda bir parçacığın bir diğerine aktardığı momentum miktarı olarak ifade edilir.

Termodinamik ve akışkanlar mekaniği gibi bilim dallarında kullanım alanı bulan iki çeşit Bejan sayısı (Be) bulunmaktadır. Bu sayılar, Adrian Bejan'ın adını taşımaktadır.

Damköhler sayıları (Da), kimyasal reaksiyonların zaman ölçeklerini, bir sistemde gerçekleşen taşınım olaylarının hızları ile karşılaştırmak için kimya mühendisliği alanında kullanılan boyutsuz sayılardır. Bu sayılar, kimya mühendisliği, termodinamik ve akışkanlar dinamiği alanlarında çalışmalar yapmış Alman kimyager Gerhard Damköhler'in adını taşımaktadır. Karlovitz sayısı (Ka), Damköhler sayısı ile ters orantılı olarak ifade edilir ve formülü Da = 1/Ka şeklindedir.

Ekman sayısı (Ek), akışkanlar dinamiğinde, viskoz kuvvetlerin Coriolis kuvvetlerine oranını ifade eden bir boyutsuz sayıdır. Bu sayı, okyanuslar ve atmosferdeki jeofiziksel olayları tanımlamak için kullanılır ve gezegenin dönmesinden kaynaklanan Coriolis kuvvetlerine oranla viskoz kuvvetlerin oranını karakterize eder. İsmi, İsveçli oşinograf Vagn Walfrid Ekman'dan gelmektedir.

Yanma süreçlerinde, Karlovitz sayısı, kimyasal zaman ölçeği ile Kolmogorov zaman ölçeğinin oranı olarak tanımlanır ve bu sayı, Béla Karlovitz'in adını taşır. Bu oran şu şekilde ifade edilir:

.

Akışkanlar dinamiği ve termodinamik alanlarında, Lewis sayısı, termal difüzyon ile kütle difüzyonunun oranı olarak tanımlanan bir boyutsuz sayıdır. Bu sayı, eşzamanlı ısı ve kütle transferi süreçlerini karakterize etmek için kullanılır. Lewis sayısı, termal sınır tabakasının kalınlığını konsantrasyon sınır tabakası ile ilişkilendirir. Lewis sayısı şu şekilde tanımlanır:

Manyetik hidrodinamikte, manyetik Reynolds sayısı (Rm) bir boyutsuz nicelik olup, bir iletken ortamın hareketiyle bir manyetik alanın adveksiyon veya indüksiyonunun, manyetik difüzyona göreceli etkilerini tahmin eder. Bu sayı, akışkanlar mekaniğindeki Reynolds sayısının manyetik bir benzeridir ve genellikle şu şekilde tanımlanır:

Markstein sayısı, yanma mühendisliği ve patlama çalışmaları çerçevesinde, ilerleyen bir alevin yüzey topolojisindeki değişimler ve yerel alev cephesi eğriliği üzerindeki yerel ısı salınımının etkisini tanımlayan bir kavramdır. Boyutsuz Markstein sayısı şu şekilde tanımlanır:

Termal akışkan dinamiği alanında, Nusselt sayısı (Nu), Wilhelm Nusselt'in adını taşıyan ve bir sınır tabakasındaki toplam ısı transferinin, kondüksiyon ısı transferine oranını ifade eden bir boyutsuz sayıdır. Toplam ısı transferi, kondüksiyon ve konveksiyonu içerir. Konveksiyon ise adveksiyon ve difüzyon bileşenlerinden oluşur. Kondüktif bileşen, konvektif koşullar altında ancak hareketsiz bir akışkan için varsayılarak ölçülür. Nusselt sayısı, akışkanın Rayleigh sayısı ile yakından ilişkilidir.

Süreklilik mekaniği alanında, Péclet sayısı, süreklilik içerisindeki taşınım fenomenlerinin araştırılmasıyla ilgili olan bir boyutsuz sayı kategorisidir. Bu sayı, bir fiziksel niceliğin akış ile gerçekleşen adveksiyon hızının, aynı niceliğin uygun bir gradyan tarafından yönlendirilen difüzyon hızına oranı olarak tanımlanır. Tür veya kütle transferi bağlamında, Péclet sayısı Reynolds sayısı ile Schmidt sayısının çarpımına eşittir. Termal akışkanlar bağlamında ise, termal Péclet sayısı, Reynolds sayısı ile Prandtl sayısının çarpımına eşittir.

Akışkanlar mekaniğinde, Rayleigh sayısı (Ra, Lord Rayleigh'e ithafen) bir akışkan için kaldırma kuvveti ilişkili bir boyutsuz sayıdır. Bu sayı, akışkanın akış rejimini karakterize eder: belirli bir alt aralıkta bir değer laminer akışı belirtirken, daha yüksek bir aralıktaki değer türbülanslı akışı belirtir. Belirli bir kritik değerin altında, akışkan hareketi olmaz ve ısı transferi konveksiyon yerine ısı iletimi ile gerçekleşir. Çoğu mühendislik uygulaması için Rayleigh sayısı büyük olup, yaklaşık 106 ile 108 arasında bir değerdedir.

Sherwood sayısı (Sh), kütle transferi operasyonlarında kullanılan bir boyutsuz sayıdır. Bu sayı, toplam kütle transfer hızının difüzif kütle taşınım hızına oranını gösterir ve Thomas Kilgore Sherwood'un adına ithafen verilmiştir.

Stanton sayısı (St), bir akışkana aktarılan ısının akışkanın ısı kapasitesine oranını ölçen bir boyutsuz sayıdır. Stanton sayısı, Thomas Stanton (mühendis)'in (1865–1931) adına ithafen verilmiştir. Bu sayı, zorlanmış konveksiyon akışlarındaki ısı transferini karakterize etmek için kullanılır.

Türbülanslı Prandtl sayısı (Prt), momentum girdap difüzyonu ile ısı transferi girdap difüzyonu arasındaki oran olarak tanımlanan bir boyutsuz terimdir. Bu sayı, türbülanslı sınır tabaka akışlarındaki ısı transferi problemlerinin çözümünde oldukça önemlidir. Prt için en basit model Reynolds benzeşimi olup, türbülanslı Prandtl sayısını 1 olarak belirler. Deneysel verilere dayanarak, Prt'nin ortalama değeri 0,85 olup, sıvının Prandtl sayısı'na bağlı olarak 0,7 ile 0,9 arasında değişmektedir.