İçeriğe atla

Schmidt-Samoa şifreleme sistemi

Schmidt-Samoa şifreleme, Alman araştırmacı Katja Schmidt-Samoa tarafından 2005’te oluşturulan asimetrik (açık anahtarlı) kriptografi yöntemidir. Bu şifrelemenin güvenilirliği Rabin'deki gibi çarpanlara ayırma probleminin zorluğuna dayanmaktadır. Bu algoritma, Rabin'in aksine şifreleme hızı pahasına, şifre çözmede belirsizlik oluşturmamaktadır.

Anahtar üretimi

Rastgele olarak yeterince büyük p ve q asal sayıları seçilmelidir. Seçilen bu sayıların kareköküne kadar olan asal sayıları bilmediğimiz için bu sayıların asal olup olmadıklarını olasılıksal asal sayı testleri ile öğrenebiliriz.

  • Farklı iki büyük asal sayı p ve q  seçilir ve 
  •   hesaplanır
  •   hesaplanır

Şimdi, N açık anahtar ve d kapalı anahtardır.

Elde edilen açık anahtar eğer birbirine yakın asal sayılarından seçilir ise açık anahtarın küp kökü civarında p ve q tespit edilebilir.

Şifreleme

c şifreli metnini oluşturmak için mesaj m kullanılarak hesaplanır.

Bu şekilde şifrelenen düz metin için sonuç bir denklik sınıfı olduğundan düz metin tespit edilemiyor.

Şifreyi çözme

Şifreli metin c'nin şifresini çözebilmek için şifresiz metin  şeklinde hesaplanır ki bu Rabin ve RSA'daki gibi Çinlilerin kalan teoremi ile yapılabilir.

Örnek:

Doğrulama:

Örnek

Şifrelenmek istenen, eğer metin ise her bir karakterin sayı karşılığı ikilik sayı sisteminde yazılır. Oluşan sayı onluk sayı sistemine çevrilir ve şifreleme işlemi bu sayı üzerinden yapılarak şifreli metin elde edilir.

Şifrelemek istediğimiz metin “ab” olsun.

  • ve

a harfinin ikilik tabandaki karşılığı → 01100001

b harfinin ikilik tabandaki karşılığı → 01100010

metinin ikilik tabandaki karşılığı → 0110000101100010

metinin onluk tabandaki karşılığı → 24930

Şifreli metni deşifrelemek için;

İşlem sonucunda bulunan sayı ikilik sayı sistemine çevrildikten sonra düz metin haline getirilir.

  • 24930 sayısının ikilik tabanda “0110000101100010” olur. Bu da “ab” metnine karşılık gelir.

Güvenlik

Algoritma, Rabin gibi, mod N' in çarpanlarına ayırma zorluğuna dayanmaktadır ve bu RSA'ya göre belirgin bir avantajdır. Bu, eğer herhangi bir mesajın şifresini çözebilen bir algoritma mevcut ise o halde bunu sadece  N'i çarpanlarına ayırmayı kullanarak yapabileceğini gösterir.

Verimlilik

Bu algoritmanın şifre çözme işlemi Rabin ve RSA kadar hızlı olmasıyla birlikte gönderici bütün üs alma işlemlerini hesaplamak zorunda olduğu için algoritmanın şifrelemesi çok daha yavaştır.

Kaynakça

İlgili Araştırma Makaleleri

<span class="mw-page-title-main">Asal sayı</span> sadece iki pozitif tam sayı böleni olan doğal sayılardır

Bir asal sayı, yalnızca 1'den büyük olup kendisinden küçük iki doğal sayının çarpımı olarak ifade edilemeyen bir doğal sayıdır. 1'den büyük ve asal olmayan doğal sayılara bileşik sayı adı verilir. Örneğin, 5 bir asal sayıdır çünkü onu bir çarpım olarak ifade etmenin mümkün olan yolları, 1 × 5 veya 5 × 1, yalnızca 5 sayısını içermektedir. Ancak, 4 bir bileşik sayıdır çünkü bu, her iki sayının da 4'ten küçük olduğu bir çarpım şeklindedir. Asal sayılar, aritmetiğin temel teoreminden ötürü sayı teorisi alanında merkezi öneme sahiptir: 1'den büyük her doğal sayı, ya bir asal sayıdır ya da asal sayıların çarpımı olarak, sıralamalarından bağımsız bir şekilde, benzersiz olarak çarpanlarına ayrılabilir.

RSA, güvenliği tam sayıları çarpanlarına ayırmanın algoritmik zorluğuna dayanan bir tür açık anahtarlı şifreleme yöntemidir. 1978’de Ron Rivest, Adi Shamir ve Leonard Adleman tarafından bulunmuştur. Bir RSA kullanıcısı iki büyük asal sayının çarpımını üretir ve seçtiği diğer bir değerle birlikte ortak anahtar olarak ilan eder. Seçilen asal çarpanları ise saklar. Ortak anahtarı kullanan biri herhangi bir mesajı şifreleyebilir, ancak şu anki yöntemlerle eğer ortak anahtar yeterince büyükse sadece asal çarpanları bilen kişi bu mesajı çözebilir. RSA şifrelemeyi kırmanın çarpanlara ayırma problemini kırmak kadar zor olup olmadığı hala kesinleşmemiş bir problemdir.

DrCrypt şifreleme algoritması, temel XOR(Özel Veya) işlemine dayanır. DrCrypt, hızlı ve güvenilir olmak üzere geliştirilmiştir. 1 adet 2048 elemandan oluşan "Bilgi Gölgeleyici" sabitler dizisine sahiptir. İçeriği tahmin edilmesi yüksek bilgilerin açıklarını kapatmak ve bu sisteme fazladan güvenlik getirmek için eklenmiştir.
DrCrypt, kullanıcının belirttiği şifreden 32 adet sabit şifreleme anahtarı ve her bilgiye sırasına özel ve benzersiz(teoride) bir "Uzunluk Damgası" atar. Sabit dizi elemanları("Bilgi Gölgeleyiciler") bu damganın oluşturulmasında kullanılır.
DrCrypt algoritmasında şifreleme ve çözme işlemleri aynı yolla yapılır. Şifreleme işlemi için önce bilgi "Uzunluk Damgası" ile XOR(Özel Veya) işlemine sokulur. Daha sonra sırası gelen şifreleme anahtarı("32'li ") ile XOR(Özel Veya) işlemine sokulur.

Anlamsal güvenlik bir açık anahtarlı şifreleme sistemindeki güvenliği tanımlamak için sık kullanılan bir ifadedir. Bir şifreleme sisteminin anlamsal olarak güvenli olması için, hesaplama yetenekleri sınırlı olan bir saldırganın, elinde sadece şifreli metin ve buna karşılık gelen açık anahtar bulunduğunda, gizli metin hakkında önemli bilgi çıkartabilmesinin uygulanabilir olmaması gerekir. Anlamsal güvenlik sadece "edilgin" saldırgan durumunu inceler, örn. bir kişinin açık anahtarı kullanarak sadece seçtiği açık metinlere karşılık gelen şifreli metinleri incelediği durum. Diğer güvenlik tanımlamaları gibi, anlamsal güvenlik, saldırganın seçtiği bazı şifreli metinlerin açık hallerini elde edebildiği seçilen şifreli metin saldırısı durumunu göz önünde bulundurmaz ve birçok anlamsal güvenlik şifreleme şemalarının seçilen şifreli metin saldırısına karşı güvensizliği gösterilebilir. Sonuç olarak anlamsal güvenlik genel bir şifreleme şemasının güvenliğini tanımlamak için yetersiz sayılır.

<span class="mw-page-title-main">Dijital İmza Algoritması</span>

Dijital İmza Algoritması dijital imza için bir FIPS standardıdır. Ağustos 1991'de National Institute of Standards and Technology (NIST) tarafından tasarlanmıştır. Dijital imza algoritması, ElGamal İmza Algoritması'nın bir varyantıdır.

Rabin şifreleme sistemi, Rabin kriptoloji veya Rabin kriptosistemi, güvenliği RSA'daki gibi tam sayı çarpanlarına ayırmanın zorluğu üzerine kurgulanmış olan asimetrik bir kriptografik tekniktir. Bununla birlikte, Rabin kriptosisteminin avantajı, saldırgan tam sayıları verimli bir şekilde çarpanlarına ayıramadığı sürece, seçilmiş bir düz metin saldırısına karşı hesaplama açısından güvenli olduğu matematiksel olarak kanıtlanmıştır, oysa RSA için bilinen böyle bir kanıt yoktur. Rabin fonksiyonunun her çıktısının dört olası girdiden herhangi biri tarafından üretilebilmesi dezavantajı; her çıktı bir şifreli metinse, olası dört girdiden hangisinin gerçek düz metin olduğunu belirlemek için şifre çözmede ekstra karmaşıklık gerekir.

Paillier şifrelemesi , 1999’da Pascal Paillier tarafından geliştirilen olasılıksal açık anahtarlı şifreleme yöntemidir. n’inci kök sınıflarını hesaplamanın zorluğunu kullanan Paillier şifreleme sistemi, kararsal bileşik kök sınıfı varsayımı üzerine kurulmuştur. Sistem, toplama işlemine göre homomorfik özellik gösterir; yani sadece açık anahtarı, ve ’nin şifrelemesini kullanarak ’nin şifrelenmiş hâli hesaplanabilir.

Kriptografide blok şifreleme, blok olarak adlandırılmış sabit uzunluktaki bit grupları üzerine simetrik anahtar ile belirlenmiş bir deterministik algoritmanın uygulanmasıdır. Blok şifreleme birçok kriptografik protokol tasarımının önemli temel bileşenlerindendir ve büyük boyutlu verilerin şifrelemesinde yaygın biçimde kullanılmaktadır.

Sayı teorisinde, asal çarpanlara ayırma bir bileşik sayının, çarpıldıklarında yine aynı sayıyı verecek şekilde, bir ve kendisi dışındaki bölenlerine ayrılmasıdır.

Blum–Goldwasser Kriptosistem veya Blum-Goldwasser şifreleme sistemidir. 1984 yılında Manuel Blum ve Şafi Goldwasser tarafından önerilen bir asimetrik anahtar şifreleme algoritmasıdır. Bulum-Goldwasser bilinen en verimli kripto sistemlerden biridir. RSA ile hız ve mesaj genişlemesi açısından kıyaslanabilir. Bu şifreleme algoritmasında rastgele sayı üretmek için Blum Blum Shub rastgele sayı üretme algoritması kullanılır. Büyük sayıların asal çarpanlarına ayrılma probleminin çözülemezliği kabulüne dayanan bir şifreleme algoritmasıdır.

Blum Blum Shub, (BBS) Lenore Blum, Manuel Blum ve Michael Shub tarafından 1986 yılında önerilen bir yalancı rastgele sayı üretme algoritması. Algoritma şu şekilde gerçekleşir:

Goldwasser–Micali (GM) kriptosistemi 1982 yılında Shafi Goldwasser ve Silvio Micali tarafından geliştirilmiş bir asimetrik anahtar şifreleme algoritmasıdır. GM standart kriptografik varsayımlar altında güvenliği kanıtlanmış ilk probabilistik açık anahtar şifreleme yöntemidir. Bununla birlikte başlangıç düz metinden yüzlerce kez daha geniş olan şifreli metinler olduğundan verimli bir kriptosistem değildir. Kriptosistemin güvenlik özelliğini kanıtlamak için Shafi Goldwasser ve Silvio Micali anlamsal güvenliğin geniş alanda kullanılan bir tanımını önerdiler.

Okamoto–Uchiyama kriptosistemi, 1998'de T. Okamoto ve S. Uchiyama tarafından bulundu. Sistem kümesinde çalışır, n p2q ya eşittir ve p ve q büyük asal sayılardır.

Merkle-Hellman kripto sistemi, 1978 yılında Martin Hellman ve Ralph Merkle tarafından geliştirilen ilk açık anahtarlı kriptosistemlerden biridir. RSA'dan daha hızlı gerçekleştirilebilmesine rağmen Adi Shamir tarafından 1982'de güvensiz olduğu gösterilmiştir.

<span class="mw-page-title-main">Eliptik eğri kriptografisi</span>

Eliptik Eğri Kriptolojisi, sonlu cisimler üzerindeki eliptik eğrilerin cebirsel topolojisine dayanan bir açık anahtar şifrelemesidir. Eliptik Eğri Kriptolojisi, diğer şifrelemeler göre daha küçük anahtar boyuna ihtiyaç duyar.

<span class="mw-page-title-main">Vigenère şifrelemesi</span> bir kriptoloji yöntemi

Vigenère şifrelemesi, alfabetik bir şifreleme metni kullanarak bir dizi farklı Sezar şifrelemesine dayalı harfleri kullanan bir şifreleme yöntemidir. Bu bir çeşit poli alfabetik ikame tablosudur.

<span class="mw-page-title-main">CBC-MAC</span> Doğrulama kodu oluşturma sistemi

Kriptografide, CBC-MAC, bir blok şifreleme ile mesaj kimlik doğrulama kodu oluşturmak için kullanılır. Mesaj, her blok önceki bloğun düzgün şifrelenmesine bağlı olacak şekilde, bir blok zinciri oluşturmak için CBC kipinde bir blok şifreleme algoritmasıyla şifrelenir. Bu bağlılık sayesinde, şifresiz metnin herhangi bir bitinde yapılan değişikliğin, şifrelenmiş son bloğun, blok şifreleme anahtarı bilinmeden tahmin edilmesini veya etkisiz hale getirilmesini engeller.

Benaloh kriptosistemi 1994 yılında Josh (Cohen) Benaloh tarafından oluşturulan Goldwasser-Micali şifreleme sisteminin bir genişletilmesidir. Goldwasser-Micali'de bitler tek tek şifrelenirken, Benaloh Kriptosisteminde veri blokları grup olarak şifrelenmektedir. Orijinal makaledeki küçük bir hata Laurent Fousse et al. 'da düzeltilmiştir.

<span class="mw-page-title-main">Şifreli metin</span> şifrelenmiş bilgi

Kriptografide, şifreli metin, şifreleme adı verilen bir algoritma kullanılarak düz metin üzerinde gerçekleştirilen şifreleme işleminin sonucunda elde edilen çıktıdır. Şifreli metin, aynı zamanda şifrelenmiş veya kodlanmış bilgi olarak da bilinir çünkü orijinal düz metnin, şifresini çözmek için uygun şifre olmadan bir insan veya bilgisayar tarafından okunamayan bir biçimini içerir. Bu işlem, hassas bilgilerin bilgisayar korsanlığı yoluyla kaybolmasını önler. Şifrelemenin tersi olan Şifre çözme, şifreli metni okunabilir düz metne dönüştürme işlemidir. Şifreli metin, kod metni ile karıştırılmamalıdır çünkü ikincisi bir şifrenin değil bir kodun sonucudur.

Affine şifreleme veya Doğrusal şifreleme, bir tür monoalfabetik ikame şifresi olup, bir alfabedeki her harf sayısal eşdeğeriyle eşleştirilir, basit bir matematiksel fonksiyon kullanılarak şifrelenir ve tekrar bir harfe dönüştürülür. Kullanılan formül, her harfin başka bir harfe şifrelendiği ve tekrar geri döndüğü anlamına gelir, yani şifre esasen hangi harfin hangisine gideceğini düzenleyen bir kurala sahip standart bir ikame şifresidir. Bu nedenle, tüm ikame şifrelerinin zayıflıklarına sahiptir. Her harf (ax + b) mod 26 fonksiyonu ile şifrelenir, burada b kaydırmanın büyüklüğüdür.